浏览全部资源
扫码关注微信
辽宁工程技术大学 测绘与地理科学学院 遥感科学与应用研究所, 辽宁 阜新 123000
[ "李玉(1963-), 男, 教授, 博士生导师, 1984年于西北电讯工程学院获得学士学位, 1991年于东南大学获得硕士学位, 2006年于瑞尔森获得硕士学位, 2010年于滑铁卢大学获得博士学位, 主要从事遥感数据处理理论与应用基础研究, 包括空间统计学随机几何模糊数学在遥感数据建模与分析方面的应用, 地物目标几何以及特征提取的研究。E-mail:liyu@lntu.edu.cn" ]
杨蕴(1992-), 男, 河南南阳人, 博士研究生, 2016年于河南城建学院获得学士学位, 主要从事量子计算及其在遥感图像中的应用。E-mail:m13147945981@163.com YANG Yun, E-mail:m13147945981@163.com
收稿日期:2018-01-31,
录用日期:2018-3-15,
纸质出版日期:2018-11-25
移动端阅览
李玉, 杨蕴, 王岱良, 等. 自适应量子遗传算法的遥感图像自动增强[J]. 光学 精密工程, 2018,26(11):2838-2853.
Yu LI, Yun YANG, Dai-liang WANG, et al. Automatic enhancement of remote sensing images based on adaptive quantum genetic algorithm[J]. Optics and precision engineering, 2018, 26(11): 2838-2853.
李玉, 杨蕴, 王岱良, 等. 自适应量子遗传算法的遥感图像自动增强[J]. 光学 精密工程, 2018,26(11):2838-2853. DOI: 10.3788/OPE.20182611.2838.
Yu LI, Yun YANG, Dai-liang WANG, et al. Automatic enhancement of remote sensing images based on adaptive quantum genetic algorithm[J]. Optics and precision engineering, 2018, 26(11): 2838-2853. DOI: 10.3788/OPE.20182611.2838.
针对传统基于归一化非完全Beta函数(Normalized Incomplete Beta Function,NIBF)的图像增强方法难以有效地自动获取最优参数且其增强效果受图像动态范围限制的问题,提出一种基于自适应量子遗传算法的NIBF遥感图像自动增强方法。首先,由图像色深,对待增强图像引入最大和最小光谱测度级,扩大其动态范围。其次,利用量子比特将NIBF参数编码为量子染色体,并设置若干量子染色体构成初始参数种群;对该参数种群进行测量和解码,以解码值作为NIBF的参数输入,对图像进行光谱测度变换,得到对应的增强图像种群。然后,利用八方向边缘检测模板提取增强图像种群中每个个体的边缘图像,由边缘强度、边缘数以及熵测度定义刻画参数种群中个体品质的适应度函数,并以此评价参数种群中的每个参数个体,保留和记录最优参数个体。在提出的进化策略中,利用量子旋转门实现量子染色体向最大适应度方向进化,并根据每代适应度的差异和进化代数自适应地调整量子旋转角的大小;以最终演化的参数种群中适应度最大的参数个体作为NIBF的最优参数,生成相应的光谱测度变换曲线,从而确定输入和输出光谱测度之间的映射关系,实现图像最优自动增强。对5幅图像的平均实验结果表明:盲/无参考图像空域质量评价指标提升了122.2%;自然图像质量评价指标提升了71.8%;运行时间为10.758 s。满足了遥感图像增强处理中的自动化、鲁棒性和高效率的要求。
Considering the problem that traditional image enhancement methods based on a normalized incomplete beta function (NIBF) have difficultly obtaining optimal parameters automatically and that enhancement effects are limited by the dynamic range of the image
a method of NIBF remote sensing image automatic enhancement based on an adaptive quantum genetic algorithm was proposed. First
from the image color depth
the maximum and minimum spectral measurement levels were introduced into the image to be enhanced to expand its dynamic range. Secondly
the parameters of NIBF were encoded into quantum chromosomes using quantum bits
and several quantum chromosomes were set as the initial parameter population. The parameter population was measured and decoded
the decoded value was input as a parameter of NIBF
and the image was transformed by spectral measure to obtain the corresponding enhanced image population. Then
edge images of each individual in the enhanced image population were extracted using the eight-direction edge detection template. The fitness function of individual quality in the parameter population was defined by edge intensity
edge number
and entropy measure
and each parameter in the parameter population was evaluated and retained
the best parameters of individuals were recorded. In the proposed evolutionary strategy
the quantum rotation gate was used to evolve the quantum chromosomes toward to the direction of maximum fitness level
and the size of the quantum rotation angle was adaptively adjusted according to the difference of each generation's fitness and evolutionary algebra. The best parameters of NIBF were the individuals with the most fitness in the finally evolved parameter population
and the corresponding spectral measure transformation curve was generated to determine the mapping relationship between the input and output spectral measure
so optimal automatic enhancement of the image was achieved. The blind/referenceless image spatial quality assessment indicators increase by 122.2%
the natural image quality assessment indicators increased by 71.8%
and the running time is 10.758 s. The proposed algorithm satisfies the requirements of automation
robustness
and high efficiency in remote sensing image enhancement.
LISANI J L, MICHEL J, MOREL J M, et al .. An inquiry on contrast enhancement methods for satellite images[J]. IEEE Transactions on Geoscience & Remote Sensing , 2016, 54(12):7044-7054.
LIU J H, ZHOU C H, CHEN P, et al .. An efficient contrast enhancement method for remote sensing images[J]. IEEE Geoscience & Remote Sensing Letters , 2017, 14(10):1715-1719.
ARAUJO A F D, CONSTANTINOU C E, TAVARES J M R S. New artificial life model for image enhancement[J]. Expert Systems with Applications , 2014, 41(13):5892-5906.
贾永红.数字图像处理[M].第3版.武汉:武汉大学出版社, 2015:68-71.
JIA Y H. Digital Image Processing [M]. Wuhan:Third edition. Wuhan University press, 2015:68-71.(in Chinese)
ZHAO W G. Adaptive image enhancement based on gravitational search algorithm[J]. Procedia Engineering , 2011, 15:3288-3292.
SOMORJEETSINGH S, MAMATA DEVI H, TANGKESHWAR SINGH T, et al .. A new easy method of enhancement of low contrast image using spatial domain[J]. International Journal of Computer Applications , 2012, 40(1):32-34.
KHAN M A U, KHAN T M, BAILEY D G, et al .. A spatial domain scar removal strategy for fingerprint image enhancement[J]. Pattern Recognition , 2016, 60:258-274.
陈博洋.彩色遥感图像的亮度直方图局部线性化增强[J].光学 精密工程, 2017, 25(2):502-508.
CHEN B Y. Local linear enhancement of luminance histogram of color remote sensing image[J]. Opt. Precision Eng ., 2017, 25(2):502-508.(in Chinese)
SANOOP KUMAR P, ASHAKIRAN A. Adaptive spectral transform for KLT, wavelet-based color image compression[J]. International Journal of Advanced Research in Computer Science , 2013, 4(10):129-131.
LEE J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Trans on Pattern Anal & Mach Intell , 1980, 2(2):165-168.
GONZALEZ R. Woods re:digital image processing[J]. Upper Saddle River Nj Pearson/Prentice Hall , 2002, 28:290-291.
HE Z, XU Q, WEI C, et al .. Adaptive semi-blind immune algorithm for image enhancement[J]. Multidimensional Systems & Signal Processing , 2005, 16(1):107-118.
SHRIVASTAVA S, UPADHYAY A. Image enhancement using genetic algorithm[J]. Proc Spie , 2007, 107(11):69-72.
李林宜, 李德仁.粒子群优化算法在遥感影像增强中的应用[J].测绘科学技术学报, 2010, 27(2):116-119.
LI L Y, LI D R. Application of particle swarm optimization algorithm in remote sensing image enhancement[J]. Journal of Geomatics Science and Technology , 2010, 27(2):116-119.(in Chinese)
MEDUKONDURU P, JOSHI M A. Enhancement of low contrast biometric images using genetic algorithm[C]. International Conference on Industrial Instrumentation and Control . IEEE , 2015: 735-739. https://www.researchgate.net/publication/283782302_Enhancement_of_low_contrast_biometric_images_using_Genetic_Algorithm?ev=auth_pub
龚雨兵, 陈志远, 杨世模.改进蚁群优化组合法在长缝光谱仪结构优化中的应用[J].光学 精密工程, 2009, 17(4):713-719.
GONG Y B, CHEN ZH Y, YANG SH M. Application of combined optimization design based on improved ACO to structural optimization of long slit spectrograph[J]. Opt. Precision Eng ., 2009, 17(4):713-719.(in Chinese)
TRELEA I C. The particle swarm optimization algorithm:convergence analysis and parameter selection[J]. Information Processing Letters , 2003, 85(6):317-325.
程振进, 王全保, 陈吉安, 等.基于混合遗传算法的数字图像相关方法[J].光学 精密工程, 2016, 24(10s):710-717.
CHENG ZH J, WANG Q B, CHEN J A, et al .. Digital image correlation method based on hybrid genetic algorithm[J]. Opt. Precision Eng ., 2016, 24(10s):710-717.(in Chinese)
LIN Y K, CHONG C S. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem[J]. Journal of Industrial and Management Optimization , 2016, 12(2):703-717.
ZENG D W, WANG S Q, SHEN Y Y, et al .. A GA-based feature selection and parameter optimization for support tucker machine[J]. Procedia Computer Science , 2017, 111:17-23.
GREFENSTETTE J J. Optimization of control parameters for genetic algorithms[J]. IEEE Transactions on Systems Man & Cybernetics , 1986, 16(1):122-128.
BRVCK S, CALDERARA M, BANIHASHEMIAN M H, et al .. Efficient algorithms for large-scale quantum transport calculations[J]. Journal of Chemical Physics , 2017, 147(7):074116.
NARAYANAN A, MOORE M. Quantum-inspired genetic algorithms[J]. Proceedings of IEEE International Conference on Evolutionary Computation , 1996, 61-66.
HAN K H, KIM J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation , 2002, 6(6):580-593.
CHEN J C.Application of quantum-inspired evolutionary algorithm to reduce PAPR of an OFDM signal using partial transmit sequences technique[J]. IEEE Transactions on Broadcasting , 2010(1):110-113.
于艾清, 刘滔.基于自适应量子遗传算法的电力系统机组组合问题[J].上海电力学院学报, 2015, 31(1):24-28.
YU A Q, LIU T. Unit commitment problem in power system based on adaptive quantum genetic algorithm[J]. Journal of Shanghai University of Electric Power , 2015, 31(1):24-28.(in Chinese)
SIDOR K, SZLACHTA A. The impact of the implementation of edge detection methods on the accuracy of automatic voltage reading[J]. Measurement Science Review , 2017, 17(2):93-99.
沈德海, 张龙昌, 鄂旭.基于Sobel算子的改进边缘检测算法[J].信息技术, 2015(4):15-18.
SHEN D H, ZHANG L CH, E X. An improved edge detection algorithm based on sobel operator[J]. Information Technology , 2015(4):15-18.(in Chinese)
许鸿奎, 韩晓, 曲怀敬.结合假边缘提取和直方图分析的图像灰度变换[J].光学 精密工程, 2017, 25(4):1070-1076.
XU H K, HAN X, QU H J.Gray scale transformation combining false edges detection with histogram analysis[J]. Opt. Precision Eng ., 2017, 25(4):1070-1076.(in Chinese)
唐永鹤, 卢焕章, 胡谋法.基于Laplacian的局部特征描述算法[J].光学 精密工程, 2011, 19(12):2999-3006.
TANG Y H, LU H ZH, HU M F.Local feature description algorithm based on Laplacian[J]. Opt. Precision Eng ., 2011, 19(12):2999-3006.(in Chinese)
MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing , 2012, 21(12):4695-4708.
MITTAL A, SOUNDARARAJAN R, BOVIK A C.Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters , 2013, 20(3):209-212.
HONG Y, REN G, LIU E. A no-reference image blurriness metric in the spatial domain[J]. Optik-International Journal for Light and Electron Optics , 2016, 127(14):5568-5575.
SHEIKH H R, SABIR M F, BOVIK A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing , 2006, 15(11):3440-3451.
袁其平, 林海杰, 陈志宏, 等.用支持向量回归法实现单帧图像超分辨率重建[J].光学 精密工程, 2016, 24(9):2302-2309.
YUAN Q P, LIN H J, CHEN ZH H, et al .. Single image super-resolution reconstruction using support vector regression[J]. Opt. Precision Eng ., 2016, 24(9):2302-2309.(in Chinese)
HARIDAS N, SOWMYA V, SOMAN K P.Gurls vs libsvm:performance comparison of kernel methods for hyperspectral image classification[J]. Indian Journal of Science & Technology , 2015, 8(24).
0
浏览量
194
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构