浏览全部资源
扫码关注微信
1.天津大学 精密测试技术及仪器国家重点实验室,天津 300072
2.天津大学 微光机电系统技术教育部重点实验室,天津 300072
[ "王向军(1955-),男,黑龙江哈尔滨人,博士,教授,博士生导师,主要从事精密测试技术与仪器、光电探测与传感技术、影像与视觉测量方面的研究。E-mail:xdocuxjw@vip.163.com" ]
[ "张继龙(1993-),男,黑龙江双鸭山人,硕士研究生,主要研究方向为嵌入式图像处理。E-mail: zjl_tju@163.com" ]
收稿日期:2018-06-28,
录用日期:2018-8-29,
纸质出版日期:2019-01-25
移动端阅览
王向军, 张继龙, 阴雷. 光流法运动估计在FPGA上的实现与性能分析[J]. 光学 精密工程, 2019,27(1):211-220.
Xiang-jun WANG, Ji-long ZHANG, Lei YIN. Implementation and performance analysis of optical flow based motion estimation on FPGA[J]. Optics and precision engineering, 2019, 27(1): 211-220.
王向军, 张继龙, 阴雷. 光流法运动估计在FPGA上的实现与性能分析[J]. 光学 精密工程, 2019,27(1):211-220. DOI: 10.3788/OPE.20192701.0211.
Xiang-jun WANG, Ji-long ZHANG, Lei YIN. Implementation and performance analysis of optical flow based motion estimation on FPGA[J]. Optics and precision engineering, 2019, 27(1): 211-220. DOI: 10.3788/OPE.20192701.0211.
图像序列的光流估计理论在机器视觉领域已被提出多年,但算法的高计算复杂度限制了其在工业领域的应用。为了满足应用的实时性要求,阐述了一种光流实时估计的实现方法。为了提高算法精度及减少FPGA片内资源消耗,对L&K光流计算方法进行改进。首先,通过设计两层光流计算架构来提高精度。针对在此过程中出现的外部存储器读写速率不够的问题,提出一次读取同时分层缓存、分时计算的方法。考虑到两层光流在计算过程中的迭代关联性,设计了满足要求的外部存储器数据读出顺序表; 然后,针对卷积运算资源消耗大的问题,设计了新的卷积权重函数,能够将卷积计算量降低73%,从而节省了大量逻辑资源; 最后通过实验验证,所提出的FPGA光流计算方法的精度高于运行在PC平台的L&K方法,卷积计算资源消耗明显降低。设计的系统可以完成1 280×1 024 pixel、60 frame/s输入视频的计算,满足光流计算的实时性要求。
Optical flow estimation theory has been proposed in the field of machine vision for many years
but the high computational complexity of the algorithm limits its application in the industrial field. To meet the real-time requirements
a method was realized by FPGA in this study. To improve the accuracy of the algorithm and reduce the consumption of hardware resources
the Lucas and Kanade optical flow calculation method was improved. First
a two-level optical flow computation framework was designed to improve the accuracy. To address the problem of insufficient read-write rate of the external memory
it was proposed that when the image was read
it was sampled and cached to two spaces at the same time for subsequent computation. Considering the iterative correlation between the two levels of optical flow
we designed the data readout order to be stored in external memory. Then
in this study
a new convolution weight function was designed to reduce the volume of convolution
which was reduced by 73%
thus saving a lot of hardware resources. Experimental results indicate that the accuracy of the hardware implementation is higher than that of the Lucas and Kanade method on a PC
and the convolution computation is significantly reduced. This system fulfills the specified real time constrains of 60 images per second with 1 280×1 024 image resolution.
孙辉, 赵红颖, 熊经武, 等.基于光流模型的图像运动估计方法[J].光学 精密工程, 2002, 10(5):443-447.
SUN H, ZHAO H Y, XIONG J W, et al ..Method of estimating image motion based on the optical flow model[J]. Opt.Precision Eng ., 2002, 10(5):443-447.(in Chinese)
BAGHAIE A, TAFTI A P, OWEN H A, et al ..Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation[J]. Plos One , 2017, 12(4):e0175078.
刘洪彬, 常发亮.权重系数自适应光流法运动目标检测[J].光学 精密工程, 2016, 24(2):460-468.
LIU H B, CHANG F L.Moving object detection by optical flow method based on adaptive weight coefficient[J]. Opt.Precision Eng ., 2016, 24(2):460-468.(in Chinese)
CARVALHO B M, SANTOS T S, OLIVEIRA L M.Fuzzy segmentation of video shots using hybrid color spaces and motion information[J]. Pattern Analysis & Applications , 2014, 17(2):249-264.
王世刚, 鲁奉军, 赵文婷, 等.应用在线随机森林投票的动作识别[J].光学 精密工程, 2016, 24(8):2010-2017.
WANG SH G, LU F J, ZHAO W T, et al ..Action recognition based on on-line random forest voting[J]. Opt.Precision Eng. , 2016, 24(8):2010-2017.(in Chinese)
BARRON J L, FLEET D J, BEAUCHEMIN S S.Performance of optical flow techniques[J]. International Journal of Computer Vision , 1994, 12(1):43-77.
LUCAS B D, KANADE T.An iterative image registration technique with an application to stereo vision[C]. International Joint Conference on Artificial Intelligence.Morgan Kaufmann Publishers Inc .1981: 674-679.
MACLEAN W J.An evaluation of the suitability of FPGAs for embedded vision systems[J].Research Gate, 2005, 408:131-131.
DIAZ J, ROS E, PELAYO F, et al ..FPGA-based real-time optical-flow system[J]. IEEE Transactions on Circuits & Systems for Video Technology , 2006, 16(2):274-279.
PYDA B, BRINDHA R.A novel high speed L-K based optical flow computation[C]. International Conference on Communication and Computational Intelligence.IEEE , 2011: 104-108. https://www.researchgate.net/publication/251993751_A_novel_high_speed_LK_based_optical_flow_computation
WEI Z, LEE D J, NELSON B E.FPGA-based real-time optical flow algorithm design and implementation[J]. Journal of Multimedia , 2007, 2(5):38-45.
BERTHOLD KP.Horn, Brian G.Schunck.Determining optical flow[J]. Artificial Intelligence , 1981, 17(1-3):185-203.
ARRIBAS P C, MACIA F M H.FPGA implementation of Santos-Victor optical flow algorithm for real-time image processing:an useful attempt[J]. Proceedings of SPIE-The International Society for Optical Engineering , 2003, 5117(5117):23-32.
ZULOAGA A, CUADRADO C, BIDARTE U.Hardware implementation of optical flow constraint equation using FPGAs[J]. Computer Vision & Image Understanding , 2005, 98(3):462-490.
ZHANG K, JIN X, WU A.Accelerating eulerian video magnification using FPGA[C]. International Conference on Advanced Communication Technology.IEEE , 2017: 554-559. https://www.researchgate.net/publication/315868083_Accelerating_Eulerian_Video_magnification_using_FPGA
Harn-Schunck Optical Flow with a Mutti-Scale Strategy.[OL](2005). http://demo.ipol.im/demo/20/ http://demo.ipol.im/demo/20/ .
DÍAZ J, ROS E, MOTA S, et al .Real time optical flow processing system[J]. Field Programmable Logic & Application , 2004, 3203:617-626.
0
浏览量
239
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构