浏览全部资源
扫码关注微信
哈尔滨工业大学 航天学院,黑龙江 哈尔滨 150006
[ "邵会兵(1977-),男,江西南城人,研究员,博士生,1998年于哈尔滨工程大学获得学士学位,2005于航天科工二院研究生院导航制导与控制专业获得硕士学位,主要从事智能弹道规划与制导方面的研究。E-mail:shaohuibingshb@163.com" ]
韦常柱(1982-),男,黑龙江佳木斯人,博士,副教授,2004年、2010年于哈尔滨工业大学分别获得学士、博士学位,主要从事飞行器制导与控制研究。E-mail:weichangzhu@hit.edu.cn WEI Chang-zhu, E-mail: weichangzhu@hit.edu.cn
收稿日期:2018-08-09,
录用日期:2018-9-13,
纸质出版日期:2019-02-15
移动端阅览
邵会兵, 韦常柱. 滑翔导弹末段多约束智能弹道规划[J]. 光学 精密工程, 2019,27(2):410-420.
Hui-bing SHAO, Chang-zhu WEI. Multi-constrained intelligent trajectory planning for gliding missiles[J]. Optics and precision engineering, 2019, 27(2): 410-420.
邵会兵, 韦常柱. 滑翔导弹末段多约束智能弹道规划[J]. 光学 精密工程, 2019,27(2):410-420. DOI: 10.3788/OPE.20192702.410.
Hui-bing SHAO, Chang-zhu WEI. Multi-constrained intelligent trajectory planning for gliding missiles[J]. Optics and precision engineering, 2019, 27(2): 410-420. DOI: 10.3788/OPE.20192702.410.
滑翔导弹末段飞行时空复杂度高、不确定性强、约束多,给弹道规划与制导算法带来了较大的建模和求解难度。针对这一问题,同时增大末段机动范围并提高弹道规划效率,本文提出一种利用连续型深度置信神经网络(Convolutional Deep Brief Networks,CDBN)预测机动能力、设计经由点状态实现末段多约束智能弹道规划的方法。过程中采用CDBN对机动能力进行在线预测,快速判定经由点状态的可行性,并且通过经由点状态智能设计,实现前后段能量的优化分配,扩大弹道机动包络;通过设计三角函数型弹目视线角实现末段弹道摆动机动,推导机动弹道最优末制导律对视线角进行跟踪,并调节机动频率以满足速度约束。仿真结果表明,CDBN相对BP网络具有更高的机动能力预测精度;本文所提智能弹道规划方法在满足末端速度约束的前提下,可以实现弹道摆动机动并大幅增加飞行包络。弹道规划能够在0.5 s内完成,满足工程应用的快速性要求。
The terminal flight of the gliding missile involves high complexity
strong uncertainty
and many constraints. It is difficult to model and solve the corresponding trajectory planning and guidance problems. To increase the maneuvering range of the gliding missile and reduce the difficulty of trajectory planning
a multi-constrained trajectory intelligent planning method was proposed. This method included waypoint design and maneuverability prediction using the Continuous Deep Belief Network (CDBN). The CDBN was used to predict the maneuvering ability online
and the feasibility of the waypoint´s state was determined rapidly. With the intelligent design of the waypoints
optimized allocation of energy was realized
which increases the flight envelope. To realize oscillatory maneuvering
the Line of Sight (LOS) relative to the target was designed as a trigonometric function
which was tracked by designing the optimal maneuvering guidance law. Finally
the desired velocity constraint was satisfied by adjusting the frequency of the LOS angle. The simulation results show that the CDBN has higher maneuverability prediction accuracy than the BP network. The proposed method can realize oscillatory maneuvering and achieve a large increase in the flight envelope while satisfying the terminal velocity constraint. Online trajectory planning based on the CDBN can be completed in half a second
which satisfies the rapidity requirements for engineering applications.
李瑜, 崔乃刚, 郭继锋.助推-滑翔导弹发展概况及关键技术分析[J].战术导弹技术, 2008, 1(5):13-19.
LI Y, CUI N G, GUO J F.Development and key technology analysis of boost-glide missile[J]. Tactical Missile Technology , 2008, 1(5):13-19.(in Chinese)
CHUANG C H, MORIMOTO H.Optimal periodic cruise for a hypersonic vehicle with constraints[R].AIAA-96-3876, 1996: 1-11.
KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems.Curran Associates Inc. 2012: 1097-1105.
BENGIO Y.Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning , 2009, 2(1):1-127.
GEOFFREY E H, SIMON O, THE Y W.A fast learning algorithm for Deep Belief Nets[J]. Neural computation , 2006, 18(7):1527-1554.
徐旺林, 庞雄奇, 高仁安.储层测井特征属性反演方法[J].天然气工业, 2005, 25(3):52-54.
XU W L, PANG X Q, GAO R A.Inversion methods of log character attribute of reservoir[J]. Nature.GAS IND , 2005, 25(3):52-54.(in Chinese)
周文杰, 严建峰, 杨璐.基于深度学习的用户投诉预测模型研究[J].计算机应用研究, 2017, 34(5):1428-1432.
ZHOU W J, YAN J F, YANG L.Research on prediction model of complaint based on deep learning[J]. Application Research of Computers , 2017, 34(5):1428-1432.(in Chinese)
董华松.油井地热开发的数值模拟与回归预测研究[D].北京: 中国地质大学, 2014.
DONG H S. Numerical Simulation and Regression Prediction for Geothermal Wells Development [D].Beijing: China University of Geosciences, 2014.(in Chinese)
刘瑞兰, 毛佳敏.基于深度置信网络的4-CBA软测量建模[J].计算机工程与应用, 2017, 53(6):227-230.
LIU R L, MAO J M.Soft sensor modeling of 4-CBA based on deep belief networks[J]. Computer Engineering and Applications , 2017, 53(6):227-230.(in Chinese)
杨星.基于深度置信网络的脑血管病风险预警研究[D].北京: 北京交通大学, 2016.
YANG X. Study of Early Warning for Cerebrovascular Risk Based on Deep Beliefs Networks [D].Beijing: Beijing Jiaotong University, 2016.(in Chinese)
魏黎明, 李晓龙, 赵征, 等.神经网络在吸气式高超声速导弹突防弹道设计上的应用[J].空天防御, 2018, 1(2):14-17.
WEI L M, LI X L, ZHAO ZH, et al ..Application of neural network in penetration of air-breathing hypersonic missile[J]. Air & Space Defense , 2018, 1(2):14-17.(in Chinese)
方科, 张庆振, 倪昆, 等.高超声速飞行器时间协同再入制导[J].航空学报, 2018, 39(5):202-217.
FANG K, ZHANG Q ZH, NI K, et al..Time-coordination reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica , 2018, 39(5):202-217.(in Chinese)
陈克俊, 赵汉元.一种适用于攻击地面固定目标的最优再入机动制导律[J].宇航学报, 1994, 15(1):1-7.
CHEN K J, ZHAO H Y.An optimal reentry maneuver guidance law applying to attack the ground fixed target[J]. Journal of Astronautics , 1994, 15(1):1-7.(in Chinese)
CHENH, MURRAY A F.A continuous Restricted Boltzmann Machine with a hardware-amenable learning algorithm[C]. International Conference on Artificial Neural Networks.Springer-Verlag , 2002: 358-363.
THEODORIDISS, KOUTROUMBAS K.模式识别(第四版)[M].李晶皎, 王爱侠, 王骄, 译.北京: 电子工业出版社, 2010.
THEODORIDISS, KOUTROUMBAS K. Pattern Recognition (4th edition) [M].LI J J, WANG A X, WANG J, translation.Beijing: electronics industry press, 2010.(in Chinese)
0
浏览量
76
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构