浏览全部资源
扫码关注微信
浙江师范大学 精密机械与智能结构研究所,浙江 金华 321004
[ "阚君武(1965-),男,吉林榆树人,教授,博士生导师,1991年、2000年于吉林工业大学分别获得学士和硕士学位,2003年于吉林大学获得博士学位,2005年于中科院长春光机所博士后出站,主要从事压电驱动器、能量回收与自供电技术、精密机械与微小机械等方面的研究。E-mail:jutkjw@163.com" ]
王淑云(1965-),女,吉林长岭人,教授,1988年、2001年和2008年于吉林大学分别获得学士、硕士和博士学位,主要从事工程问题的理论建模、仿真分析及优化等方面的研究。E-mail: jutwsy@163.comWANG Shu-yun, E-mail: jutwsy@163.com
收稿日期:2018-07-16,
录用日期:2018-9-12,
纸质出版日期:2019-03-15
移动端阅览
阚君武, 何恒钱, 王淑云, 等. 可调频旋磁激励式压电发电机的设计与试验[J]. 光学 精密工程, 2019,27(3):577-583.
Jun-wu KAN, Heng-qian HE, Shu-yun WANG, et al. Structure and performance of rotating piezoelectric generator with tunable frequency[J]. Optics and precision engineering, 2019, 27(3): 577-583.
阚君武, 何恒钱, 王淑云, 等. 可调频旋磁激励式压电发电机的设计与试验[J]. 光学 精密工程, 2019,27(3):577-583. DOI: 10.3788/OPE.20192703.0577.
Jun-wu KAN, Heng-qian HE, Shu-yun WANG, et al. Structure and performance of rotating piezoelectric generator with tunable frequency[J]. Optics and precision engineering, 2019, 27(3): 577-583. DOI: 10.3788/OPE.20192703.0577.
为提高旋转式压电发电机的安全性与有效带宽,提出一种可调频旋磁激励式压电发电机,并从理论、仿真与试验三个方面对发电机的工作特性进行了研究。建立了压电梁在端部外载荷作用下的刚度/频率偏移模型,并通过仿真获得了刚度、动磁铁数量对发电机响应特性的影响规律。结果表明,压电梁刚度随端部拉/压力的增大而线性增大/减小,固有频率相应地提高且趋于平缓/降低且速率增大,而动磁铁数量将影响发电机的谐振峰数量与放大比。在此基础上进行了相关试验,试验表明,压电梁受拉伸/压缩都将提高发电机的固有频率并降低输出电压幅值,且受压时减幅更大;此外,动磁铁数量除仿真中影响因素外对发电机的固有频率也具有一定影响;通过改变动磁铁数量与调节量,实现了发电机固有频率在39.2~112 Hz内的调整,最大频率偏移为185.7%。
To improve the security of a rotary piezoelectric generator and broaden the effective frequency band
a rotating piezoelectric generator with tunable frequency was studied and its performance was evaluated through theoretical analysis
simulations
and experiments. Natural frequency offset and stiffness offset models were first established
and the effects of stiffness and the number of rotating magnets on the response performance of a generator were determined through a simulation. The analytical results show that the stiffness of the generator linearly increased with axial tension and linearly decreased with axial compression. In addition
the natural frequency increased and became steady with axial tension but decreased at a fast rate with axial compression. Based on the fact that the number of rotating magnets affects the number of resonant peaks as well as the amplitude ratio of the generator
a prototype rotating piezoelectric generator was fabricated and tested. The test results reveal that the natural frequency of the generator increases and that generated voltage decreases depending on whether the piezoelectric beam is stretched or compressed
with the latter having a greater influence on voltage reduction. In addition
the number of rotating magnets affects the natural frequency of the generator. By changing the number of rotating magnets and conducting pre-stretching and pre-compression
the natural frequency of the generator can be adjusted to within a range of 39.2-112 Hz with a maximum frequency shift of 185.7%.
程廷海, 刘文博, 赵宏伟, 等.气动高压激励的阵列式盘型压电俘能器[J].光学 精密工程, 2017, 25(5):1222-1228.
CHENG T H, LIU W B, ZHAO H W, et al .. Array piezoelectric plate harvester excited by pneumatic compressed air[J]. Opt. Precision Eng. , 2017, 25(5):1222-1228. (in Chinese)
阚君武, 富佳伟, 王淑云, 等.涡激振动式微型流体俘能器的研究现状与展望[J].光学 精密工程, 2017, 25(6):1502-1512.
KAN J W, FU J W, WANG SH Y, et al .. Research status and prospect of vortex-induced vibration micro-fluid energy harvester[J]. Opt. Precision Eng., 2017, 25(6):1502-1512. (in Chinese)
CUI Y, ZHANG Q, YAO M, et al .. Vibration piezoelectric energy harvester with multi-beam[J]. AIP Advances , 2015, 5(4):4495-4498.
WEI C, JING X. A comprehensive review on vibration energy harvesting: Modelling and realization[J]. Renewable & Sustainable Energy Reviews , 2017, 74:1-18.
PILLATSCH P, YEATMAN E M, HOLMES A S. Real world testing of a piezoelectric rotational energy harvester for human motion[J]. J. Phys.: Conf. Ser., 2013,476: 012010.
KUANG Y, YANG Z, ZHU M. Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking[J]. Smart Materials and Structures , 2016, 25(8):085029.
VIET N V, AL-QUTAYRI M, LIEW K M, et al .. An octo-generator for energy harvesting based on the piezoelectric effect[J]. Applied Ocean Research , 2017, 64:128-134.
FU H, YEATMAN E M. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion[J]. Energy , 2017,125: 152-161.
ZHAO L, YANG Y. Toward small-scale wind energy harvesting: design, enhancement, performance comparison and applicability[J]. Shock and Vibration , 2017(4):3585972.
TAO J X, VIET N V, CARPINTERI A, et al .. Energy harvesting from wind by a piezoelectric harvester[J]. Engineering Structures , 2017,133:74-80.
ZOU H X, ZHANG W M, LI W B, et al .. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion[J]. Energy Conversion & Management , 2017,148:1391-1398.
ZHANG J, FANG Z, SHU C, et al .. A rotational piezoelectric energy harvester for efficient wind energy harvesting[J]. Sensors & Actuators A Physical , 2017,262: 123-129.
ZHANG H, JIANG S, HE X. Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations[J]. Applied Physics Letters , 2017,110(22):18-27.
KAN J, FU J, WANG S, et al .. Study on a piezo-disk energy harvester excited by rotary magnets[J]. Energy , 2017,122:62-69.
JUNG H J, BAEK K H, HIDAKA S, et al .. Design and optimization of secondary shock type piezoelectric system[C]. Isaf-Ecapd-Pfm., IEEE , 2012: 1-4.
ZHANG Y, ZHENG R, NAKANO K, et al .. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting[J]. Applied Physics Letters , 2018,112(14): 143901.
阚君武, 于丽, 王淑云, 等.旋磁激励式压电悬臂梁发电机性能分析与试验[J].机械工程学报, 2014, 50(8):144-149.
KAN J W, YU L, WANG SH Y, et al .. Performance analysis and test of piezo-cantilever generator excited by rotary magnet[J]. Opt. Precision Eng., 2014, 50(8):144-149. (in Chinese)
MORRIS D J, YOUNGSMAN J M, ANDERSON M J, et al .. A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism[J]. Smart Materials & Structures , 2008, 17(6):065021.
PETERS C, MAURATH D, SCHOCK W, et al .. A closed-loop wide-range tunable mechanical resonator for energy harvesting systems[J]. Journal of Micromechanics & Microengineering , 2009, 19(9):094004.
CHALLA V R, PRASAD M G, FISHER F T. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications[J]. Smart Materials & Structures , 2011, 20(2):25004-25011.
刘鸿文.高等材料力学[M].北京:高等教育出版社, 1985.
LIU H W. Advanced Material Mechanics [M]. Beijing: Higher Education Press, 1985. (in Chinese)
0
浏览量
148
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构