浏览全部资源
扫码关注微信
中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
[ "樊彦国(1965-),男,河北望都人,博士,教授,1992年、1998年于武汉测绘科技大学(现武汉大学)分别获得学士学位、硕士学位,2007年于中国矿业大学(北京)获得博士学位,现为中国石油大学(华东)地球科学与技术学院教授、系主任。主要从事遥感图像处理,数字图像处理方面的研究。E-mail:ygfan@upc.edu.cn" ]
[ "柴江龙(1993-),男,山东寿光人,硕士研究生,2016年于中国矿业大学获得学士学位。主要研究方向:图像配准、图像拼接。E-mail:s16010074@s.upc.edu.cn/CJL1178735739@163.com" ]
收稿日期:2018-08-08,
录用日期:2018-10-16,
纸质出版日期:2019-03-15
移动端阅览
樊彦国, 柴江龙, 许明明, 等. 基于ORB与RANSAC融合改进的图像配准[J]. 光学 精密工程, 2019,27(3):702-717.
Yan-guo FAN, Jiang-long CHAI, Ming-ming XU, et al. Improved fast Image registration algorithm based on ORB and RANSAC fusion[J]. Optics and precision engineering, 2019, 27(3): 702-717.
樊彦国, 柴江龙, 许明明, 等. 基于ORB与RANSAC融合改进的图像配准[J]. 光学 精密工程, 2019,27(3):702-717. DOI: 10.3788/OPE.20192703.0702.
Yan-guo FAN, Jiang-long CHAI, Ming-ming XU, et al. Improved fast Image registration algorithm based on ORB and RANSAC fusion[J]. Optics and precision engineering, 2019, 27(3): 702-717. DOI: 10.3788/OPE.20192703.0702.
针对旋转不变性二进制描述算法(Oriented Fast and Rotated Brief
ORB)的尺度旋转性配准误差大,配准率较低及随机采样一致性(Random Sample Consensus
RANSAC)算法随机性强且不稳定的问题,提出一种ORB与RANSAC结合的快速特征匹配算法。首先,对特征点提取方式进行优化选择,消除特征边缘影响。之后构建简化的金字塔式尺度空间模型,改进分层图像的尺度空间结构,减少生成图像层数和数目;然后采用梯度方向改进传统ORB算法中的主方向提取模式,提高特征角点主方向的准确性。最后,通过构建分块随机取样检测的方式改进RANSAC算法,提高RANSAC算法的稳定性和图像配准的准确性。实验结果表明改进后的ORB和RANSAC融合算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB算法高,尺度配准精度提高55.41%,旋转配准精度提高26.66%。满足复杂图像快速精确配准拼接的精度和实时性要求。
In the binary description algorithm (Oriented Fast and Rotated Brief
ORB)
scale and rotation cause a great error in the registration
and the registration rate is low. Meanwhile
the RANdom Sample Consensus (RANSAC) algorithm has an instability issue. Therefore
in this study
a fast feature matching algorithm was presented based on ORB with RANSAC. First
the feature point extraction method was optimized to eliminate the influence of feature edges. After constructing a simplified pyramid scale-space model
the scale-space structure of the layered image was improved by reducing the number of generated image layers. Subsequently
the gradient direction was used to improve the main direction extraction mode of the traditional ORB algorithm
and the accuracy of the main direction of the feature angular point was improved. Finally
the RANSAC algorithm was improved by applying block random sampling
which improved the stability and accuracy of image registration. Experimental results reveal that the improved ORB and RANSAC fusion algorithm performance greatly improved in terms of scale and rotation registration
and higher registration precision is exhibited in comparison with traditional ORB. The scale registration accuracy is improved by 55.41%
and the rotational registration accuracy is improved by 26.66%. These results indicate that the proposed algorithm basically meets the accuracy and real-time requirements for fast and accurate registration of complex images.
余先川, 吕中华, 胡丹.遥感图像配准技术综述[J].光学 精密工程, 2013, 21(11):2960-2972.
YU X CH, LU ZH H, HU D. Review of remote sensing image registration techniques[J]. Opt. Precision Eng. , 2013, 21(11):2960-2972. (in Chinese)
王志强, 程红, 杨桄, 等.全局图像配准的目标快速定位方法[J].红外与激光工程, 2015, 44(S1):225-229.
WANG ZH Q, CHENG H, YANG G, et al .. Fast target location method for global image registration[J]. Infrared and Laser Engineering , 2015, 44(S1): 225-229. (in Chinese)
王志社, 杨风暴, 纪利娥, 等.基于聚类分割和形态学的可见光与SAR图像配准[J].光学学报, 2014, 34(2):0215002.
WANG ZH SH, YANG F B, JI L E, et al .. Optical and SAR image registration based on cluster segmentation and mathematical morphology[J]. Acta Optica Sinica , 2014, 34(2): 0215002. (in Chinese)
李玉峰, 李广泽, 谷绍湖, 等.基于区域分块与尺度不变特征变换的图像拼接算法[J].光学 精密工程, 2016, 24(5):1197-1205.
LI Y F, LI G Z, GU SH H, et al .. Image mosaic algorithm based on area blocking and SIFT[J]. Opt. Precision Eng. , 2016, 24(5):1197-1205. (in Chinese)
胡社教, 江萍, 陈宗海.基于序列图像的全景图像拼接[J].合肥工业大学学报:自然科学版, 2003, 26(4):525-528.
HU SH J, JIANG P, CHEN Z H. Panoramic image mosaic based on sequence image[J].Journal of Hefei University of Technology: Natural Science, 2003, 26(4):525-528. (in Chinese)
MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J]. International Journal of Computer Vision , 2004, 60(1), 63-86.
曾峦, 王元钦, 谭久彬.改进的SIFT特征提取和匹配算法[J].光学 精密工程, 2011, 19(6):1391-1397.
ZENG Y, WANG Y Q, TAN J B. Improved algorithm for SIFT feature extraction and matching[J]. Opt. Precision Eng. , 2011, 19(6):1391-1397. (in Chinese)
RUBLEE E, RABAUD V, KONOLIGE K, et al .. ORB: An efficient alternative to SIFT or SURF[C]. IEEE International Conference on Computer Vision. IEEE , 2012: 2564-2571.
李小红, 谢成明, 贾易臻, 等.基于ORB特征的快速目标检测算法[J].电子测量与仪器学报, 2013, 27(5):455-460.
LI X H, XIE CH M, JIA Y ZH, et al .. Rapid moving object detection algorithm based on ORB feature[J]. Journal of Electronic Measurement and Instrument , 2013, 27(5):455-460. (in Chinese)
ZHUO L, GENG Z, ZHANG J, et al .. ORB feature based web pornographic image recognition[J]. Neurocomputing , 2016, 173(P3):511-517.
夏克付, 李鹏飞, 陈小平.基于改进RANSAC算法的单应矩阵鲁棒估计方法[J].计算机工程与应用, 2017, 53(23):147-152.
XIA K F, LI P F, CHEN X P. Robust method for homography matrix estimation based on improved RANSAC algorithm[J]. Computer Engineering and Applications , 2017, 53(23):147-152. (in Chinese)
孙浩, 王程, 王润生.局部不变特征综述[J].中国图像图形学报.2011(2):141-151.
SUN H, WANG CH, WANG R SH. A review of local invariant features[J]. Journal of Image and Graphics . 2011(2):141-151. (in Chinese)
HARRIS C. A combined corner and edge detector[J]. Proc Alvey Vision Conf , 1988(3):147-151.
孙世宇, 张岩, 胡永江, 等.改进模型估计的无人机侦察视频快速拼接方法[J].红外与激光工程, 2018, 47(9):382-390.
SUN SH Y, ZHANG Y, HU Y J, et al .. Fast mosaic method of unmanned aerial vehicle reconnaissance video based on improvement model fitting[J]. Infrared and Laser Engineering .2018, 47(9):382-390. (in Chinese)
王睿, 朱正丹.融合全局-颜色信息的尺度不变特征变换[J].光学 精密工程, 2015, 23(1):295-301.
WANG R, ZHU ZH D. SIFT matching with color invariant characteristics and global context[J]. Opt. Precision Eng ., 2015, 23(1): 295-301. (in Chinese)
0
浏览量
16
下载量
22
CSCD
关联资源
相关文章
相关作者
相关机构