浏览全部资源
扫码关注微信
1.西北工业大学 空天微纳系统教育部重点实验室,陕西 西安 710072
2.西北工业大学 陕西省微纳机电系统重点实验室,陕西 西安 710072
[ "余晓畅 (1994-),男,安徽广德人,博士研究生,2016年于西北工业大学获得学士学位,主要从事微纳滤波及多光谱成像方面的研究。E-mail:yuxiaochang@mail.nwpu.edu.cn" ]
收稿日期:2019-01-29,
录用日期:2019-3-13,
纸质出版日期:2019-05-15
移动端阅览
余晓畅, 赵建村. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程, 2019,27(5):999-1012.
Xiao-chang YU, Jian-cun ZHAO. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and precision engineering, 2019, 27(5): 999-1012.
余晓畅, 赵建村. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程, 2019,27(5):999-1012. DOI: 10.3788/OPE.20192705.0999.
Xiao-chang YU, Jian-cun ZHAO. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and precision engineering, 2019, 27(5): 999-1012. DOI: 10.3788/OPE.20192705.0999.
传统光谱成像系统采用探测器与传统分光元件耦合的方式,体积较大、定制化能力不足。微/纳光机电系统的快速发展,为微型化光谱成像系统提供了解决途径。基于表面等离激元学和光学超表面的微纳滤波结构,可实现像素级的光场调控,有望替代传统滤波器件并具有与成像系统片上集成的潜力。近年来,集成了动态或静态滤波结构的光谱成像微系统已崭露头角,逐渐构建起全新的光谱成像方法,但在原理机制、器件性能、制造成本、集成装配工艺等方面还有许多需要攻克的难题。本文综述了国内外在像素级微纳滤波结构、滤波和成像器件的集成制造和装配等方面的研究进展,梳理了光学滤波-探测集成器件的发展脉络,探讨了其局限性并展望了发展趋势。
The majority of the present spectral imaging systems couple traditional filters with photodetectors
which are too large and cannot be customized. The rapid advances in micro/nano-opto-electro-mechanical systems have provided effective solutions for the continuing miniaturization of spectral imaging systems. Based on plasmonics and optical metasurfaces
micro/nano color filters are capable of regulating light fields at the pixel level and thus have the potential to replace traditional filters and to be integrated with imaging systems on chips. In recent years
microspectral imaging systems integrated with dynamic or static filters have come to the forefront of new research and are enabling the development of new methods of spectral imaging. However
complete understanding of the fundamental theories of plasmonic filters remains elusive. In addition
a host of problems exist in terms of device performance
manufacturing cost
and assembly processes. In this review
we present the research progress of pixel-level integrated microdevices for spectral imaging
including micro/nano color filters
integrated manufacturing of filters and imagers
and assembly techniques of microspectral imaging systems. We also summarize the limitations and discuss the development trends of microspectral imaging systems.
SRIDURAI V, MATHEWS M, YELAMAGGAD C V, et al . Electrically tunable soft photonic gel formed by blue phase liquid crystal for switchable color-reflecting mirror[J]. ACS Applied Materials & Interfaces , 2017, 9(45): 39569-39575.
XIE Z, YANG J, VASHISTHA V, et al . Liquid-crystal tunable color filters based on aluminum metasurfaces[J]. Optics Express , 2017, 25(24): 30764.
BARTHOLOMEW R, WILLIAMS C, KHAN A, et al . Plasmonic nanohole electrodes for active color tunable liquid crystal transmissive pixels[J]. Optics Letters , 2017, 42(14): 2810-2813.
齐敏珺, 王新全, 于翠荣, 等.静态显微光谱成像系统的研制[J].光学 精密工程, 2015, 23(5): 1240-1245.
QI M J, WANG X Q, YU C R, et al . Development of static microscopic spectral imaging system[J]. Opt. Precision Eng., 2015, 23(5): 1240-1245. (in Chinese)
WANG Q, SHI J, WANG J, et al . Design and characterization of an AOTF hyper-spectral polarization imaging system[J]. Journal of Modern Optics , 2017, 64(1): 1-7.
GUNNING W J, DENATALE J, STUPAR P, et al . Adaptive focal plane array-An example of MEMS, photonics, and electronics integration[J]. SPIE , 2005, 5783: 366-375.
CARRANO J, BROWN J, PERCONTI P. Tuning in to detection[J]. SPIE′s Oemagazine , 2004, DOI: 10.1117/2.5200404.0003
KOMAR A, PANIAGUA-DOMÍNGUEZ R, MIROSHNICHENKO A, et al . Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics , 2018, 5(5): 1742-1748.
SUN S, YANG W, ZHANG C, et al . Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano , 2018, 12(3): 2151-2159.
WOLFF P A, EBBESEN T W, THIO T, et al . Extraordinary optical transmission through sub-wavelength hole arrays[J] . Nature , 1998, 391(6668): 667-669.
ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials , 2012, 11(11): 917-924.
KIM I, YOON G, JANG J, et al . Outfitting next generation displays with optical metasurfaces[J]. ACS Photonics , 2018, 5(10): 3876-3895.
CLARIVATE ANALYTICS. Citation report on the key word'metamaterials'[EB/OL]. http://wcs.webofknowledge.com/RA/analyze.do?product=UA&SID=7AsswU3Egq8rOwIpIS3&field=SJ_ResearchArea_ResearchArea_en&yearSort=false http://wcs.webofknowledge.com/RA/analyze.do?product=UA&SID=7AsswU3Egq8rOwIpIS3&field=SJ_ResearchArea_ResearchArea_en&yearSort=false .[2019-06-05], [2019-06-05] .
SOUKOULIS C M, WEGENER M. Optical metamaterials - More bulky and less lossy[J]. Science , 2010, 330(6011): 1633-1634.
BURGOS S P, YOKOGAWA S, ATWATER H A. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor[J]. ACS Nano , 2013, 7(11): 10038-10047.
HORIE Y, HAN S, LEE J, et al . Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated CMOS image sensor technologies[J]. Nano Letters , 2017, 17(5): 3159-3164.
XIONG K, TORDERA D, EMILSSON G, et al . Switchable plasmonic metasurfaces with high chromaticity containing only abundant metals[J]. Nano Letters , 2017, 17(11): 7033-7039.
JALALI M, YU Y, XU K, et al . Stacking of colors in exfoliable plasmonic superlattices[J]. Nanoscale, 2016, 8(42): 18228-18234.
KAPLAN A F, XU T, JAY G L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters , 2011, 99(14): 143111.
LEE K, JANG J, PARK S J, et al . Angle-insensitive and CMOS-compatible subwavelength color printing[J]. Advanced Optical Materials , 2016, 4(11): 1696-1702.
DUEMPELMANN L, CASARI D, LUU-DINH A, et al . Color rendering plasmonic aluminum substrates with angular symmetry breaking[J]. ACS Nano , 2015, 9(12): 12383-12391.
GREYBUSH N J, LIBERAL I, MALASSIS L, et al . Plasmon resonances in self-assembled two-dimensional Au nanocrystal metamolecules[J]. ACS Nano , 2017, 11(3): 2917-2927.
LEE H, AHN H, MUN J, et al . Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles[J]. Nature , 2018, 556(7701): 360-365.
FLAURAUD V, REYES M, PANIAGUA-DOMÍNGUEZ R, et al . Silicon nanostructures for bright field full color prints[J]. ACS Photonics , 2017, 4(8): 1913-1919.
YANG B, LIU W, LI Z, et al . Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials , 2018, 6(4): 1701009.
LI Z, BUTUN S, AYDIN K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films[J]. ACS Photonics , 2015, 2(2): 183-188.
YANG Z, ZHOU Y, CHEN Y, et al . Reflective color filters and monolithic color printing based on asymmetric Fabry-Perot cavities using nickel as a broadband absorber[J]. Advanced Optical Materials , 2016, 4(8): 1196-1202.
GHADERI M, AYERDEN N P, EMADI A, et al . Design, fabrication and characterization of infrared LVOFs for measuring gas composition[J]. Journal of Micromechanics and Microengineering , 2014, 24(8): 84001.
SHENG B, CHEN P, TAO C, et al . Linear variable filters fabricated by ion beam etching with triangle-shaped mask and normal film coating technique[J]. Chinese Optics Letters , 2015, 13(12): 71-74.
YANG Z, CHEN Y, ZHOU Y, et al . Microscopic interference full-color printing using grayscale-patterned Fabry-Perot resonance cavities[J]. Advanced Optical Materials , 2017, 5(10): 1700029.
LEE K, HAN S Y, PARK H J. Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances[J]. Advanced Optical Materials , 2017, 5(14): 1700284.
ZHAO J, YU X, YANG X, et al . Polarization independent subtractive color printing based on ultrathin hexagonal nanodisk-nanohole hybrid structure arrays[J]. Optics Express , 2017, 25(19): 23137.
WANG L, NG R J H, SAFARI D S, et al . Large area plasmonic color palettes with expanded gamut using colloidal self-assembly[J]. ACS Photonics , 2016, 3(4): 627-633.
GENET C, EBBESEN T W. Light in tiny holes[J]. Nature , 2007, 445(7123): 39-46.
WANG P, YU X, ZHU Y, et al . Batch fabrication of broadband metallic planar microlenses and their arrays combining nanosphere self-assembly with conventional photolithography[J]. Nanoscale Research Letters , 2017, 12(1):388.
叶鑫, 倪锐芳, 黄进, 等.自组装法制备的亚波长纳米多孔二氧化硅薄膜[J].光学 精密工程, 2015, 23(5): 1233-1239.
YE X, NI R F, HUANG J, et al . Sub-wavelength nano-porous silica anti-reflection coatings fabricated by dip coating method[J]. Opt. Precision Eng., 2015, 23(5): 1233-1239. (in Chinese)
ALAN S, JIANG H, SHAHBAZBEGIAN H, et al . Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces[J]. Nanotechnology , 2017, 28(13): 135302.
王嘉星, 范庆斌, 张辉, 等.表面等离激元结构色研究进展[J].光电工程, 2017(1): 23-33.
WANG J X, FAN Q B, ZHANG H, et al . Research progress in plasmonic structural colors[J]. Opto-Electronic Engineering, 2017(1): 23-33. (in Chinese)
XIA Z, EFTEKHAR A A, SOLTANI M, et al . High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Optics Express , 2011, 19(13): 12356.
王玺, 陈扬, 胡小燕, 等.集成偏振近红外焦平面探测器研制与信噪比分析[J].光电子·激光, 2017(3): 250-255.
WANG X, CHEN Y, HU X Y, et al . Fabrication and signal-to-noise ratio analysis of an integratedpolarization focal plane detector for near-infrared light[J]. Journal of Optoelectronics·Laser, 2017(3): 250-255. (in Chinese)
玻恩.光学原理-上册[M].北京:电子工业出版社, 2005.
BO E. Principles of Optics [M]. Beijing: Publishing House of Electronics Industry, 2005. (in Chinese)
NG H M, DOPPALAPUDI D, ILIOPOULOS E, et al . Distributed Bragg reflectors based on AlN/GaN multilayers[J]. Applied Physics Letters , 1999, 74(7): 1036-1038.
CHEN H, GUO H, ZHANG X, et al . High reflectance of backside reflector with a hybrid metallic mirror and ALD-TiO 2 /Al 2 O 3 DBR[J]. Chinese Journal of Electron Devices , 2013(4): 431-436.
KUTTERUF M R, YETZBACHER M K, DEPRENGER M J, et al . 9-band SWIR multi-spectral sensor providing full motion video[C]. SPIE , 2014, 9076(5): 303-309.
GEELEN B, TACK N, LAMBRECHTS A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic[C]. Advanced Fabrication Technologies for Micro/Nano Optics & Photonics VII, International Society for Optics and Photonics, 2014: 661-674.
WANG X Q, HUANG S L, YU Y, et al . Integrated linear variable filter/InGaAs focal plane array spectral micro-module and its wavelength calibration[J]. Acta Photonica Sinica, 2018, 47(5):0530001.
王绪泉, 黄松垒, 于月华, 等.微型长波近红外物联网节点及实验研究[J].红外与毫米波学报, 2018, 37(1): 42-46.
WANG X Q, HUANG S L, YU Y H, et al . A compact long-wavelength near-infrared IOT node and its performance experiments[J]. Journal of Infrared and Millimeter Waves , 2018, 37(1): 42-46. (in Chinese)
WANG S, CHEN X, LU W, et al . Integrated optical filter arrays fabricated by using the combinatorial etching technique[J]. Optics Letters , 2006, 31(3): 332-334.
VTT NEWS. VTT′s miniature hyperspectral camera launched to space in Aalto-1 satellite[EB/OL]. http://www.vttresearch.com/media/news/vtts-miniature-hyperspectral-camera-launched-tospace-in-aalto-1-satellite http://www.vttresearch.com/media/news/vtts-miniature-hyperspectral-camera-launched-tospace-in-aalto-1-satellite .[2017-06-26][2019-06-05]
XIMEA PRODUCTS. xiQ - USB3 vision cameras[EB/OL]. https://www.ximea.com/en/usb3-vision-camera/xiq https://www.ximea.com/en/usb3-vision-camera/xiq .[2019-06-05], [2019-06-05] .
IMEC. Imec′s high-speed ultrasonic snapscan camera enables hyperspectral imaging acquisition in less than one second[EB/OL]. https://www.imec-int.com/en/articles/imec-s-high-speed-ultrasonic-snapscan-camera-enables-hyperspectral-imaging-acquisition-in-less-than-one-second https://www.imec-int.com/en/articles/imec-s-high-speed-ultrasonic-snapscan-camera-enables-hyperspectral-imaging-acquisition-in-less-than-one-second .[2018-01-29], [2019-06-05] .
VISIONSYSTEMSDESIGN. 2018 Innovators Awards: Platinum-level honorees[EB/OL]. https://www.vision-systems.com/articles/2018/04/2018-innovators-awards-platinum-level-honorees.html https://www.vision-systems.com/articles/2018/04/2018-innovators-awards-platinum-level-honorees.html .[2018-04-10], [2019-06-05] .
马立, 赵志杰, 周辅君, 等.微小光学器件装配系统与实验研究[J].光学 精密工程, 2018, 26(6): 1462-1469.
MA L, ZHAO ZH J, ZHOU F J, et al . Assembly system for miniature optical parts and experimental study[J]. Opt. Precision Eng ., 2018, 26(6): 1462-1469. (in Chinese)
黄海亭.微装配中显微视觉关键技术研究[D].大连: 大连理工大学, 2018.
HUANG H T. Research on Key Technologies of Micro Vision in Micro Assembly [D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
XUE G, TODA M, ONO T. Comb-drive XYZ-microstage with large displacements based on chip-level microassembly[J]. Journal of Microelectromechanical Systems, 2016, 25(6): 989-998.
JAIN R K, MAJUMDER S, GHOSH B, et al . Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper[J]. Journal of Microelectromechanical Systems , 2015, 35: 76-91.
BARGIEL S, RABENOROSOA K, CLÉVY C, et al . Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench[J]. Journal of Microelectromechanical Systems , 2010, 20(4): 45012.
KOMATI B, KUDRYAVTSEV A, EVY C, et al . Automated robotic microassembly of flexible optical components[C]. IEEE International Symposium on Assembly & Manufacturing , 2016: 93-98.
夏江.三维PoP封装的振动可靠性研究及疲劳寿命分析[D].广州: 华南理工大学, 2017.
XIA J. Reliability Study of 3D PoP Stacking Assembly and Fatigue Life Analysis under Vibraition Loading [D]. Guangzhou: South China University of Technology, 2017. (in Chinese)
李操. 3D封装工艺及可靠性研究[D].武汉: 华中科技大学, 2015.
LI C. Study on the Process and Reliability of 3D Packaging [D]. Wuhan: Huazhong University of Science and Technology, 2015. (in Chinese)
STELLER W, MEINECKE C, GOTTFRIED K, et al . SIMEIT-project: High precision inertial sensor integration on a modular 3D-interposer platform[C]. Electronic Components & Technology Conference IEEE , 2014: 1218-1225.
陟颖.人工微纳结构的红外光谱选择与非对称透射特性研究[D].上海: 上海师范大学, 2018.
ZHI Y. Research on Near-infrared Spectral Selection and Asymmetric Transmission of Artificial Micro and Nano Structure [D]. Shanghai: Shanghai Normal University, 2018. (in Chinese)
周旭昌, 李东升, 木迎春, 等. 640×512偏振长波量子阱红外焦平面探测器研制[J].红外与激光工程, 2017, 46(1): 84-89.
ZHOU X CH, LI D SH, MU Y CH, et al . Study on 640×512 polarimetric LWIR QWIP FPA[J]. Infrared and Laser Engineering , 2017, 46(1): 84-89. (in Chinese)
高博.四通道红外滤波芯片及其紧凑型光谱成像系统研制[D].西安: 西北工业大学, 2018.
GAO B. Development of Four-channel Infrared Filtering Chip and its Compact Spectral Imaging System [D]. Xi′an: Northwestern Polytechnical University, 2018. (in Chinese)
吴银花, 胡炳樑, 高晓惠, 等.利用区域增长技术的自适应高光谱图像分类[J].光学 精密工程, 2018, 26(2): 426-434.
WU Y H, HU B L, GAO X H, et al . Adaptive hyperspectral image classification using region-growing techniques[J]. Opt. Precision Eng ., 2018, 26(2): 426-434. (in Chinese)
0
浏览量
21
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构