浏览全部资源
扫码关注微信
北京工业大学 材料科学与工程学院,北京 100124
[ "闫岸如 (1988-),女,山西太原人,博士,助理研究员,2017年于北京工业大学获得博士学位,现为北京工业大学材料科学与工程学院博士后,主要从事激光3D打印金属粉末方面的研究。E-mail:yar_0816@126.com" ]
收稿日期:2018-12-20,
录用日期:2019-2-1,
纸质出版日期:2019-05-15
移动端阅览
闫岸如, 刘学胜, 王智勇, 等. 选区激光熔化成形W-Ni-Cu的成形工艺及热物理性能[J]. 光学 精密工程, 2019,27(5):1024-1032.
An-ru YAN, Xue-sheng LIU, Zhi-yong WANG, et al. Process parameters and thermal physical properties of W-Ni-Cu composite fabricated using selective laser melting[J]. Optics and precision engineering, 2019, 27(5): 1024-1032.
闫岸如, 刘学胜, 王智勇, 等. 选区激光熔化成形W-Ni-Cu的成形工艺及热物理性能[J]. 光学 精密工程, 2019,27(5):1024-1032. DOI: 10.3788/OPE.20192705.1024.
An-ru YAN, Xue-sheng LIU, Zhi-yong WANG, et al. Process parameters and thermal physical properties of W-Ni-Cu composite fabricated using selective laser melting[J]. Optics and precision engineering, 2019, 27(5): 1024-1032. DOI: 10.3788/OPE.20192705.1024.
为了研究W-Ni-Cu合金选区激光熔化技术(SLM)直接成形工艺及其热物理性能,设计了以激光功率、扫描速度、扫描线长度、搭接率为变量的工艺实验,研究各参数对致密度的影响,采用SEM、热分析仪、差式扫描量热仪、热-机械分析仪研究合金的微观组织、导热率与热膨胀系数。结果表明:选择合理的优化工艺参数,W-Ni-Cu(SLM)成形致密度最高达到94.5%;微观组织为难熔相W发生了桥接与团聚,基体相CuNi呈网络状包裹于W相周围;测试试样所加载热流平行于烧结成形方向时,导热系数与热膨胀系数分别是120.314 0 W/(m·K)及7.16×10
-6
/K,加载热流方向垂直于烧结成形方向时,导热系数与热膨胀系数分别是99.257 2 W/(m·K)及7.02×10
-6
/K。不同方向成形测试件导热系数和热膨胀系数的差异是由难熔相W在CuNi相中的分布以及孔隙数量决定的。采用选区激光熔化成形技术可以成形性能较好的W-Ni-Cu合金。
To investigate the process and thermal physical performance of W-Ni-Cu manufactured using the Selective Laser Melting (SLM) technique
an experiment of four variables was conducted to study the influence of laser power
scanning speed
length of the scanning line
and overlap rate on the density. Scanning electron microscopy as well as a thermal analyzer
differential scanning calorimeter
and thermal-mechanical analyzer were used to study the microstructure
thermal conductivity
and thermal expansion. The results show that the density of W-Ni-Cu reaches 94.5% with the optimized process. The microstructure is a type of bridging connection
and agglomeration occurs between the W phases and CuNi phase that wraps around the W phase like a network. When the measuring direction is parallel to the processing direction
the thermal conductivity and thermal expansion coefficients are 120.314 0 W/m·K and 7.16×10
-6
/K
respectively. When the measuring direction is perpendicular to the processing direction
the thermal conductivity and thermal expansion coefficients are 99.257 2 W/m·K and 7.02×10
-6
/K
respectively. Test pieces form in different directions with different thermal conductivity and thermal expansion coefficients because of the distribution of W in CuNi and the existence of pores. The study shows that the W-Ni-Cu alloy parts exhibiting better performance can be manufactured directly using SLM.
DING W, HE H, PAN B. Structural features and thermal properties of W/Cu compounds using tight-binding potential calculations[J]. Journal of Materials Science , 2016, 51(12):5948-5961.
范景莲, 彭石高, 刘涛, 等.钨铜复合材料的应用与研究现状[J].稀有金属与硬质合金, 2006, 34(3):30-35.
FAN J L, PENG SH G, LIU T, et al . Application and latest development of W-Cu composite materials[J]. Rare Metals and Cemented Carbides , 2006, 34(3):30-35. (in Chinese)
肖泽锋, 杨永强, 宋长辉, 等.激光选区烧结超高分子量聚乙烯工艺及性能[J].光学 精密工程, 2016, 24(3):502-510.
XIAO Z F, YANG Y Q, SONG CH H, et al .Process and properties of selective laser sintering ultrahigh molecular weight polyethylene[J]. Opt. Precision Eng. , 2016, 24(3):502-510. (in Chinese)
白玉超, 杨永强, 王迪, 等.锡青铜激光选区熔化工艺及其性能[J].稀有金属材料与工程, 2018, 47(3):1007-1012.
BAI Y CH, YANG Y Q, WANG D, et al . Selective laser melting of Tin bronze alloy and its properties[J]. Rare Metal Materials and Engineering, 2018, 47(3):1007-1012. (in Chinese)
吴伟辉, 杨永强, 肖冬明, 等.激光选区熔化成型可控超轻结构化零件的孔隙生成效果[J].光学 精密工程, 2017, 25(6):1547-1556.
WU W H, YANG Y Q, XIAO D M, et al . Pore forming results of controllable ultra-light structured parts by selective laser melting[J]. Opt. Precision Eng. , 2017, 25(6):1547-1556. (in Chinese)
闫岸如, 杨恬恬, 王燕灵, 等.变能量激光选区熔化IN718镍基超合金的成形工艺及高温机械性能[J].光学 精密工程, 2015, 23(6):1695-1704.
YAN A R, YANG T T, WANG Y L, et al . Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy[J]. Opt. Precision Eng., 2015, 23(6): 1695-1704. (in Chinese)
DEMIR A G, PREVITALI B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting[J]. Materials & Design, 2017, 119: 338-350.
CALVIN R, JEF M, MEGAN W, et al . Beyond the orthogonal: on the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V[J]. International Journal of Fatigue , 2018, 116:344-354.
WANG M, LI R, YUAN T, et al . Selective laser melting of W-Ni-Cu composite powder: Densification, microstructure evolution and nano-crystalline formation[J]. International Journal of Refractory Metals and Hard Materials , 2017, 70:9-18.
YAO J T, LI C J, LI Y, et al . Relationships between the properties and microstructure of Mo-Cu composites prepared by infiltrating copper into flame-sprayed porous Mo skeleton[J]. Materials & Design , 2015, 88:774-780.
LEE Y J, LEE B H, KIM G S, et al . Evaluation of conductivity in W-Cu composites through the estimation of topological microstructures[J]. Materials Letters, 2006, 60(16):2000-2003.
TAN C, ZHOU K, MA W, et al . Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties[J]. Science & Technology of Advanced Materials , 2018, 19(1):370.
ZHOU Q, CHEN P. Fabrication of W-Cu composite by shock consolidation of Cu-coated W powders[J]. Journal of Alloys and Compounds, 2016, 657:215-223.
GU D, SHEN Y. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys and Compounds , 2009, 473(s1-2):107-115.
CHEN W, SHI Y, DONG L, et al . Infiltration sintering of WCu alloys from copper-coated tungsten composite powders for superior mechanical properties and arc-ablation resistance[J]. Journal of Alloys & Compounds , 2017, 728: 196-205.
CHEN W, DONG L, ZHANG Z, et al . Investigation and analysis of arc ablation on WCu electrical contact materials[J]. Journal of Materials Science Materials in Electronics , 2016, 27(6):5584-5591.
闫岸如, 杨恬恬, 王燕灵, 等.钨粉粒度和形状对选区激光熔化W-xCu成形与显微组织的影响[J].中国激光, 2016, 43(2): 0203007.
YAN A R, YANG T T, WANG Y L, et al . Effect of tungsten powder particle size and shape on consolidation and microstructure of W-xCu composites by selective laser melting[J] . Chinese Journal of Lasers , 2016, 43(2): 0203007. (in Chinese)
YAN A, WANG Z, YANG T, et al . Microstructure, thermal physical property and surface morphology of W-Cu composite fabricated via selective laser melting[J]. Materials & Design , 2016, 109:79-87.
YAN A, WANG Z, YANG T, et al . Sintering densification behaviors and microstructural evolvement of W-Cu-Ni composite fabricated by selective laser sintering[J]. International Journal of Advanced Manufacturing Technology , 2017, 90(1-4):657-666.
GERMAN R M. A model for the thermal properties[J]. Metallurgical Transactions A , 1993, 24(8):1745-1752.
SANG H L, SU Y K, HAM H J. Thermal conductivity of tungsten-copper composites[J]. Thermochimica Acta, 2012, 542(542):2-5.
LUO X, YANG Y, LIU C, et al . The thermal expansion behavior of unidirectional SiC fiber-reinforced Cu-matrix composites[J]. Scripta Materialia , 2008, 58(5):401-404.
ZHANG K, SHI Z Q, QIAO G J. Preparation and thermophysical properties of directional SiC/Cu-Si composite via spontaneous infiltration[J]. Ceramics International, 2016, 42:996-1001.
ZHOU Y, WANG K, LIU R, et al . High performance tungsten synthesized by microwave sintering method[J]. International Journal of Refractory Metals & Hard Materials , 2012, 34(34):13-17.
0
浏览量
128
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构