浏览全部资源
扫码关注微信
大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连 116024
[ "王紫光 (1984-),男,辽宁大连人,博士研究生,2009年于辽宁石油化工大学获得学士学位,2012年于大连交通大学获得硕士学位,主要从事硬脆材料的精密与超精密加工。E-mail:wzg1107@mail.dlut.edu.cn" ]
周平 (1980-),男,浙江余姚人,博士,副教授,2003,2009年于大连理工大学分别获得学士和博士学位,主要从事精密与超精密加工工艺机理、高性能零件制造技术和机械密封结构设计制造技术的研究。E-mail: pzhou@dlut.edu.cnZHOU Ping, E-mail: pzhou@dlut.edu.cn
收稿日期:2018-11-23,
录用日期:2019-1-2,
纸质出版日期:2019-05-15
移动端阅览
王紫光, 周平, 高尚, 等. 单晶硅反射镜的超精密磨削工艺[J]. 光学 精密工程, 2019,27(5):1087-1095.
Zi-guang WANG, Ping ZHOU, Shang GAO, et al. Ultra-precision grinding of monocrystalline silicon reflector[J]. Optics and precision engineering, 2019, 27(5): 1087-1095.
王紫光, 周平, 高尚, 等. 单晶硅反射镜的超精密磨削工艺[J]. 光学 精密工程, 2019,27(5):1087-1095. DOI: 10.3788/OPE.20192705.1087.
Zi-guang WANG, Ping ZHOU, Shang GAO, et al. Ultra-precision grinding of monocrystalline silicon reflector[J]. Optics and precision engineering, 2019, 27(5): 1087-1095. DOI: 10.3788/OPE.20192705.1087.
为了实现单晶硅反射镜高效低损伤的超精密加工,研究了基于工件旋转法磨削原理的单晶硅反射镜超精密磨削工艺。通过形貌检测和成份测试的方法分析了该工艺采用的超细粒度金刚石砂轮的组织结构特征,并对单晶硅进行了超精密磨削试验,研究了超细粒度金刚石砂轮的磨削性能。通过砂轮主轴角度与工件面形之间的数学关系实现对磨削工件面形的控制。最后,采用超细粒度金刚石砂轮对
Φ
100 mm×5 mm的单晶硅反射镜进行了超精密磨削试验验证。试验结果表明,超细粒度金刚石砂轮磨削后的单晶硅表面粗糙度
R
a
值小于10 nm,亚表面损伤深度小于100 nm,磨削后的单晶硅反射镜面形PV值从初始的8.1 μm减小到1.5 μm。由此说明采用该工艺磨削单晶硅反射镜能够高效地获得低损伤表面和高精度面形。
An ultra-precision grinding process employing a rotational grinding technique was investigated to achieve high-efficiency
low-damage grinding of monocrystalline silicon reflectors. First
the characteristics of ultra-fine wheels
such as their surface topography and compositions
were analyzed. The grinding performance of wheels was studied based on the grinding of monocrystalline silicon. Then
the shape of the grinding surface was controlled based on the mathematical relationship between the posture angles of the grinding wheel spindle and surface profile of the workpiece. Ultra-precision grinding experiments on
Φ
100 mm × 5 mm silicon reflectors with ultra-fine diamond wheels are conducted for verification. The results show that the surface roughness
R
a
is less than 10 nm
the subsurface damage depth is less than 100 nm
and the PV value of the surface of the silicon reflector decreases from 8.1 μm to 1.5 μm. It can be concluded that the grinding process can efficiently produce silicon reflectors with low surface damage and shapes of high precision.
田野, 戴一帆, 石峰, 等.单晶硅反射镜激光能量吸收系数与衬底表面质量的关联[J].国防科技大学学报, 2015, 37(6): 26-29.
TIAN Y, DAI Y F, SHI F, et al .. Correlation between substrate surface quality and laser energy absorption rate for mono-crystalline silicon reflector[J]. Journal of National University of Defense Technology , 2015, 37(6): 26-29. (in Chinese)
王樊.大尺寸单晶硅反射镜超精密连续抛光和检测的研究.长春: 长春理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10186-2010080296.htm
WANG F. Research on Ultra-Precision Continuous Polishing and Detection of the Larde-size Single-Crystal Silicon Optical Reflector . Changchun: Changchun University of Science and Technology, 2010. (in Chinese)
王孝坤, 薛栋林, 张学军.大口径非球面系统的共基准加工与检验[J].光学 精密工程, 2018, 26(4):743-748.
WANG X K, XUE D L, ZHANG X J. Fabrication and testing of large aspheric system based on common reference[J]. Opt. Precision Eng. , 2018, 26(4): 743-748. (in Chinese)
宣斌, 谢京江, 宋淑梅.多模式组合抛光技术在光学加工中的应用[J].光学 精密工程, 2011, 19(1): 41-50.
XUAN B, XIE J J, SONG SH M. Application of multi-mode combined polishing to optical manufacturing[J]. Opt. Precision Eng. , 2011, 19(1): 41-50. (in Chinese)
张峰.纳米级面形精度光学平面镜加工[J].中国光学, 2014, 7(4): 616-621.
ZHANG F. Fabrication of optical flat mirror with nanometer surface error[J] . Chinese Optics , 2014, 7(04): 616-621. (in Chinese)
朱永伟, 李信路, 王占奎, 等.光学硬脆材料固结磨料研磨中的亚表面损伤预测[J].光学 精密工程, 2017, 25(2): 367-374.
ZHU Y W, LI X L, WANG ZH K, et al .. Subsurface damage prediction for optical hard-brittle material in fixed abrasive lapping[J]. Opt. Precision Eng. , 2017, 25(2): 367-374. (in Chinese)
COOKE F, BROWN N, PROCHONOW E. Annular lapping of precision optical flatware[J]. Optical Engineering , 1976, 15(5): 407-415.
YIN S, OHMORI H, DAI Y, et al .. ELID grinding characteristics of glass-ceramic materials[J]. International Journal of Machine Tools and Manufacture , 2009, 49(3-4): 333-338.
KERN D. Face Grinding of Optical Glass with Diamond Cup Wheels . Technical University Brunswick, 1969.
BRINKSMEIER E, MUTLUGVNES Y, KLOCKE F, et al .. Ultra-precision grinding[J]. CIRP Annals-Manufacturing Technology , 2010, 59(2): 652-671.
MECHOLSKY J J J, FREIMAN S W, RICE R W. Effect of grinding on flaw geometry and fracture of glass[J]. Journal of the American Ceramic Society , 2010, 60(3-4): 114-117.
HED P P, EDWARDS D F. Relationship between surface roughness and subsurface damage[J]. Applied Optics , 1987, 26(21): 4677-4680.
BIFANO, THOMAS G, THOMAS A D, et al .. Ductile-regime grinding of brittle materials: experimental results and the development of a model. Advances in fabrication and metrology for optics and large optics[J]. International Society for Optics and Photonics , 1989, 966: 108-105.
ZARUDI, I, ZHANG L. Subsurface damage in single-crystal silicon due to grinding and polishing[J]. Journal of Materials Science Letters , 1996, 15(7): 586-587.
MATSUI S. An experimental study on the grinding of silicon wafer-the wafer rotation grinding method[J]. Bull.Japan Soc.Prec.Eng. , 1988, 22(4): 295-300.
SUN W P, Z J P, G R F. Fine grinding of silicon wafers: effects of chuck shape on grinding marks[J]. International Journal of Machine Tools and Manufacture , 2005, 45(6): 673-686.
CHIDDAMBARAM S, PEI Z J, et al .. Fine grinding of silicon wafers: a mathematical model for the chuck shape[J]. International Journal of Machine Tools and Manufacture , 2003, 43(7): 739-746.
PEI Z J, BILLINGSLEY S R, MIURA S. Grinding induced subsurface cracks in silicon wafers[J]. International Journal of Machine Tools and Manufacture , 1999, 39(7): 1103-1116.
ZHANG Y X, KANG R K, GUO D M, et al .. Microstructure studies of the grinding damage in monocrystalline silicon wafers[J]. Rare Metals , 2007, 26(1): 13-18.
HUO F, ZHAO H, ZHAO D. Nanogrinding of silicon wafer using a novel vitrified diamond wheel[J]. Materials and Manufacturing Processes , 2011, 26(8): 977-981.
ZHANG Z, HUO F, WU Y, et al .. Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material[J]. International Journal of Machine Tools and Manufacture , 2001, 51(1): 18-24.
WANG Z, YAN Y, ZHOU P, et al . A high-efficient precision grinding for fabricating moderately thick plane mirror (MTPM)[J]. The International Journal of Advanced Manufacturing Technology , 2018, 96(5-8): 2559-2566.
ZHANG Z, HUANG S, WANG S, et al . A novel approach of high-performance grinding using developed diamond wheels[J]. The International Journal of Advanced Manufacturing Technology , 2017, 91(9): 1-12.
CAI R, ROWE W B, MORGAN M N. The effect of porosity on the grinding performance of vitrified CBN wheels[J]. Key Engineering Materials , 2003, 238-239:295-300.
王紫光, 高尚, 朱祥龙, 等.硅片低损伤磨削砂轮及其磨削性能[J].光学 精密工程, 2017, 25(10): 2689-2696.
WANG Z G, GAO SH, ZHU X L, et al .. Grinding wheel for low-damage grinding of silicon wafers and its grinding perfeomance [J]. Opt. Precision Eng. , 2017, 25(10): 2689-2696. (in Chinese)
NGUYEN D, LV B, YUAN J, et al .. Experimental study on elastic deformation machining process for aspheric surface glass[J]. The International Journal of Advanced Manufacturing Technology , 2013, 65(1-4): 525-531.
0
浏览量
152
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构