浏览全部资源
扫码关注微信
1.吉林大学 机械与航空航天工程学院,吉林 长春 130022
2.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
3.东北大学,辽宁 沈阳 110819
[ "郭疆 (1976-),男,新疆石河子人,博士研究生,研究员,2000年、2011年于吉林大学获得学士、硕士学位,主要从事空间遥感成像技术的研究。E-mail:guojiang006@163.com" ]
[ "赵继 (1959-),男,吉林蛟河人,教授,博士生导师,1997年于吉林工业大学获得博士学位,主要从事智能精密制造方向研究。E-mail:jzhao@jlu.edu.cn" ]
收稿日期:2018-11-20,
录用日期:2018-12-11,
纸质出版日期:2019-05-15
移动端阅览
郭疆, 朱磊, 赵继, 等. 大口径空间反射镜大容差支撑结构设计与优化[J]. 光学 精密工程, 2019,27(5):1138-1147.
Jiang GUO, Lei ZHU, Ji ZHAO, et al. Design and optimize of high tolerance support structure for large aperture space mirror[J]. Optics and precision engineering, 2019, 27(5): 1138-1147.
郭疆, 朱磊, 赵继, 等. 大口径空间反射镜大容差支撑结构设计与优化[J]. 光学 精密工程, 2019,27(5):1138-1147. DOI: 10.3788/OPE.20192705.1138.
Jiang GUO, Lei ZHU, Ji ZHAO, et al. Design and optimize of high tolerance support structure for large aperture space mirror[J]. Optics and precision engineering, 2019, 27(5): 1138-1147. DOI: 10.3788/OPE.20192705.1138.
针对传统反射镜无法消除加工及装配应力,长期使用后面形精度下降不能满足使用要求的问题,提出了一种高稳定性空间反射镜支撑结构的解决方案,进行了具有大容差特性的1.5 m口径高精度空间反射镜工程化研究和创制。依据经验和理论,完成了初始反射镜组件构型,反射镜的材料选用RB-SiC,采用三角形背部半开口反射镜轻量化形式和背部三点膜片型柔性支撑结构。以装配误差0.01 mm的9种工况下反射镜的面形RMS变化量最小为目标,利用isight软件对反射镜支撑结构的主要尺寸进行了优化设计。最终完成了轻量化率为82.1%,组件质量为170.23 kg的反射镜的研制。试验结果表明:反射镜在1
g
重力作用下,面形精度RMS优于0.016
λ
(
λ
=632.8 nm);加入0.02 mm强迫位移模拟装配误差,面形RMS仍然为0.016
λ
;在20 ℃±5 ℃温变环境下,面形RMS变化量在0.002
λ
范围内;组件一阶固有频率为101.3 Hz。反射镜组件静态刚度、动态刚度、面形精度以及环境适应性满足空间工程应用要求。
In a traditional space mirror
the stress of processing and assembling cannot be eliminated and this causes the surface accuracy of the mirror to degrade. In this study
an optimization method for a high-stability support structure for a space mirror was proposed to solve this problem. A 1.5-m aperture high-tolerance and high-accuracy space mirror for engineering applications was fabricated. First
the initial configuration of the mirror subassembly was designed based on theory and experience. The mirror was composed of reaction-bonded silicon carbide. A back-half open triangle was selected for the lightweight structure of the mirror
and a diaphragm-type flexure structure was used to support the mirror. The main dimensions of the supporting structure were then optimized using iSIGHT
and the minimum change of the root mean square (RMS) in nine situations with a 0.01-mm assembly error was chosen as the target. A mirror with a mass of 170.23 kg and lightweight ratio of 82.1% was obtained in 30 months. A series of tests revealed the following: The surface accuracy of the mirror was 0.016
λ
RMS(
λ
=632.8 nm) under 1 g of gravity
and a 0.02-mm forced displacement on the interface of the structure caused no changes. The change scope was 0.002
λ
(RMS) in a (20 ± 5 ℃)temperature environment
and the first-order natural frequency of the subassembly was 101.3 Hz. The static stiffness
dynamic stiffness
accuracy of the surface
and environment adaptability of the subassembly were found to meet the requirements of commercial remote sensing.
LILLIE C F, DAILEY D, POLIDAN R S. Large aperture telescopes for launch with the Ares V launch vehicle[J]. Acta Astronautica , 2010, 66(3):374-381.
STEPHEN E K, H PHILIP S. Large aperture space telescope mirror fabrication trades[C]. Space Telescopes and Instrumentation 2008: Optical, Infrared and Millimeter International Society for Optics and Photonics, 2008, 7(12): 788067.
CHRIS S, DAN L, MARTIN S, et al .. Building large telescopes in orbit using small satellites[J]. Acta Astronautica , 2017, 141(9):183-195.
BOUGOIN M, LAVENAC J.From HERSCHEL to GAIA, 3-meter SiC space optics[J]. SPIE , 2011, 8126:81260V.
ARGABRIGHT V, ARNOLD B, ARONSTEIN D, et al ..Advanced technology large-aperture space telescope(ATLAST): A technology roadmap for the next decade[R]. Pasadena: NASA , 2009.
张学军, 樊延超, 鲍赫, 等.超大口径空间光学遥感器的应用和发展[J].光学 精密工程, 2016, 24(11):2613-2626.
ZHANG X J, FAN Y CH, BAO H, et al .. Applications and development of ultra large aperture optical remote sensors[J]. Opt. Precision Eng. , 2016, 24(11):2613-2626. (in Chinese)
DOUGLAS G, MAC M, MATTIAS B. Large aperture segmented space Telescope (LASST): Can we control a 12000 segment mirror?[C]. 2011 American Control Conference, San Francisco, USA , 2011: 438-443.
李剑锋, 吴小霞, 李玉霞, 等.大口径主镜位置的实时检测[J].光学 精密工程, 2016, 24(11): 2721-2729.
LI J F, WU X X, LI Y X, et al ..On line measurement of position for large primary mirror[J]. Opt. Precision Eng . 2016, 24(11):2721-2729. (in Chinese)
MARK C. The james webb space telescope(JWST)[J]. Advances in space Research , 2008, 41(12):1983 -1991.
徐炜.大型空间光学遥感器反射镜及其组件的分析与优化[D].长春: 中国科学院长春光学精密机械与物理研究所, 2012.
XU W. Analysis and optimization on reflect mirror of a space large optics remote sensor and their components [D].Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012. (in Chinese)
胡瑞.基于拓扑优化的空间反射镜与柔性支撑结构设计方法[D].大连: 大连理工大学, 2017.
HU R. Topology optimization-based design method of space mirror and flexible support structure [D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
王克军, 董吉洪, 宣明, 等.空间遥感器大口径反射镜的复合支撑结构[J].光学 精密工程, 2016, 24(7):1719-1730.
WANG K J, DONG J H, XUAN M, et al .. Compound support structure for large aperture mirror of space remote sensor[J]. Opt. Precision Eng ., 2016, 24(7):1719- 1730. (in Chinese)
李志来, 徐宏, 关英俊.1.5 m口径空间相机主镜组件的结构设计[J].光学 精密工程, 2015, 23(6):1635-1641.
LI ZH L, XU H, GUAN Y J. Structural design of 1.5 m mirror subassembly for space camera[J]. Opt. Precision Eng ., 2015, 23(6):1635-1641. (in Chinese)
胡佳宁, 董吉洪, 周平伟.空间光学遥感器主镜柔性支撑的参数化设计[J].光学学报, 2016, 36(11):1128001-8.
HU J N, Dong J H, ZHOU P W. Parameter Design of Flexure supporting for optical space remote sensor primary mirror[J]. Acta Optica Sinica , 2016, 36(11):1128001. (in Chinese)
郭疆.离轴三反航天测绘相机研究[D].长春: 吉林大学, 2011.
GUO J. Study on three-mirror off-axis aerospace mapping camera [D].Changchun: Jilin University, 2011. (in Chinese)
高劲松, 申振峰, 王笑夷, 等.SiC空间反射镜材料及其表面改性技术现状分析[J].中国光学与应用光学, 2009, 2(2):71-78.
GAO J S, SHEN ZH F, WANG X Y, et al ..Research status quo of SiC space mirror material and its surface modification[J]. Chinese journal of optics and applied optics , 2009, 2(2):71-78. (in Chinese)
CHEN Y C, HUANG B K, YOU Z T, et al ..Optimization of lightweight structure and supporting bipod flexure for a space mirror[J]. Applied Optics , 2016, 55(36): 10382-10391.
POLINA.A A, NADEJDA D T.Comparing and analysis of design lightweight large mirrors for space basing[C]. SPIE , 2016, 98891X: 1-4.
BUTOVA D V, TOLSTOBA N D, FLEYSHER A.G., et al ..Optimization of the parameters of space-based mirrors[C]. SPIE , 2017, 101001M: 1-7.
0
浏览量
189
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构