浏览全部资源
扫码关注微信
1.福州大学 物理与信息工程学院,福建 福州 350116
2.泉州黎明职业大学 智能制造学院,福建 泉州 362000
3.长安大学 信息工程学院, 陕西 西安 710064
4.瑞典皇家工学院, 瑞典 斯德哥尔摩 10044
[ "郑思凡 (1975-),男,福建仙游人,博士研究生,2008年于华侨大学获得硕士学位, 现为黎明职业大学智能制造学院实验师,主要从事机器视觉故障诊断,经编机贾卡嵌入式系统与写花工艺图形软件开发。E-mail:zhengsf@lmu.edu.cn" ]
收稿日期:2018-09-19,
录用日期:2018-11-6,
纸质出版日期:2019-05-15
移动端阅览
郑思凡, 王卫星, 吴永春. 基于光流拓扑稀疏加权的同步运动去混叠[J]. 光学 精密工程, 2019,27(5):1188-1195.
Si-fan ZHENG, Wei-xing WANG, Yong-chun WU. Synchronous motion de-aliasing based on optical flow topological sparse weighting[J]. Optics and precision engineering, 2019, 27(5): 1188-1195.
郑思凡, 王卫星, 吴永春. 基于光流拓扑稀疏加权的同步运动去混叠[J]. 光学 精密工程, 2019,27(5):1188-1195. DOI: 10.3788/OPE.20192705.1188.
Si-fan ZHENG, Wei-xing WANG, Yong-chun WU. Synchronous motion de-aliasing based on optical flow topological sparse weighting[J]. Optics and precision engineering, 2019, 27(5): 1188-1195. DOI: 10.3788/OPE.20192705.1188.
针对欧式距离加权的稀疏子空间聚类在对多个同步运动刚体进行运动分割时不考虑刚体流形结构的局限性,提出了一种由光流轨迹流形拓扑结构加权的稀疏子空间聚类算法,在光流轨迹的时空相似度邻接矩阵里计算各轨迹相似度的流形距离并嵌入稀疏子空间字典表达的权值矩阵进行稀疏系数求解,使得流形距离较近的轨迹优先成为稀疏自表达字典,从而减少对欧式空间相距较小但不属于同一物体的同步运动刚体轨迹的聚类混叠,经过同步移动和同步摆动两种情况算法对比实验表明:本文提出算法可以将混叠降低到1%以下
最后,在双针床经编机贾卡针同步摆动的运动分割结果表明算法具有进一步的工业视觉应用前景。
This work aims to overcome the limitations of Euclidean distance weighted sparse subspace clustering that does not consider the manifold structure of a rigid body. Here
a sparse subspace clustering method weighted using optical flow trajectory manifold topology was proposed. In the proposed algorithm
the manifold distance of each trajectory in the space-time similarity adjacency matrix was embedded into the weight matrix to solve the sparse coefficient. This ensured that the trajectory with a relatively closed manifold distance became the sparse self-expression dictionary
thereby reducing the clustering aliasing error of synchronous motion. The comparison of experiments between synchronous motion and synchronous swing reveals that the proposed algorithm can reduce aliasing error down to 1%. Finally
the motion segmentation results of Jacquard needle indicate that the algorithm can be potentially used for industrial applications.
TRON R, VIDAL R. A benchmark for the comparison of 3-d motion segmentation algorithms[C]//Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on. IEEE, 2007: 1-8.
VIDAL R, FAVARO P. Low rank subspace clustering (LRSC)[J]. Pattern Recognition Letters , 2014, 43(1):47-61.
LIU G, LIN Z, YU Y. Robust subspace segmentation by low-rank representation[C]. Proceedings of the 27 th international conference on machine learning ( ICML -10), 2010: 663-670.
费彬, 孙京阳, 张俊举, 等.基于稀疏处理的多能X射线分离成像[J].光学 精密工程, 2017, 25(4): 1106-1111.
FEI B, SUN J Y, ZHANG J J, et al . Separation of multi-energy X-ray imaging based on sparse processing[J]. Opt. Precision Eng. , 2017, 25(4): 1106-1111.
HUANG J, ZHANG T. The benefit of group sparsity[J]. The Annals of Statistics , 2010, 38(4): 1978-2004.
ELHAMIFAR E, VIDAL R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE transactions on pattern analysis and machine intelligence , 2013, 35(11): 2765-2781.
YIN M, WU Z, ZENG D, et al . Sparse subspace clustering with jointly learning representation and affinity matrix[J]. Journal of the Franklin Institute , 2018, 355(8): 3795-3811.
CHEN H, WANG W, FENG X. Structured sparse subspace clustering with within-cluster grouping[J]. Pattern Recognition , 2018, 83: 107-118.
OSWAL U, NOWAK R. Scalable sparse subspace clustering via ordered weighted regression[J]. arXiv preprint arXiv : 1807.03746, 2018.
WANG P, HAN B, LI J, et al . Structural reweight sparse subspace clustering[J]. Neural Processing Letters , 2019, 49(3): 965-977.
邱云飞, 费博雯, 刘大千.局部加权最小二乘回归的重叠子空间聚类算法[J].模式识别与人工智能, 2018, 31(2): 114-122.
QIU Y F, FEI B W, LIU D Q. Overlapping subspace clustering based on local weighted least squares regression[J]. Pattern Recognition and Artificial Intelligence , 2018, 31 (2):114-122.
ZHAI Y, JI Z. Reweighted sparse subspace clustering based on fractional-order function[C]. International Conference on Intelligent Science and Big Data Engineering. Springer, Cham , 2017: 412-422.
CHEN Y, LI G, GU Y. Active orthogonal matching pursuit for sparse subspace clustering[J] . IEEE Signal Processing Letters , 2018, 25(2): 164-168.
PANAHI A, BIAN X, KRIM H, et al . Robust subspace clustering by bi-sparsity pursuit: guarantees and sequential algorithm[C]. IEEE Winter Conference on Applications of Computer Vision. IEEE Computer Society , 2018: 1302-1311.
PHAM D S, BUDHADITYA S, PHUNG D, et al . Improved subspace clustering via exploitation of spatial constraints[C]. Computer Vision and Pattern Recognition ( CVPR ), 2012 IEEE Conference on. IEEE, 2012: 550-557.
RAVICHANDRAN A, WANG C, RAPTIS M, et al . Superfloxels: A mid-level representation for video sequences[C]. European Conference on Computer Vision. Springer, Berlin, Heidelberg , 2012: 131-140.
YOU C, VIDAL R. Geometric conditions for subspace-sparse recovery[J]. 2015: 1585-1593.
DYER E L, SANKARANARAYANAN A C, BARANIUK R G. Greedy Feature Selection for Subspace Clustering [M]. JMLR.org, 2013.
CHAPELLE O, ZIEN A. Semi-supervised classification by low density separation[C]. AISTATS , 2005, 2005: 57-64.
BROX T, MALIK J. Large displacement optical flow: descriptor matching in variational motion estimation[J]. IEEE transactions on pattern analysis and machine intelligence , 2011, 33(3): 500-513.
隋中山, 李俊山, 张姣, 等.张量低秩表示和时空稀疏分解的视频前景检测[J].光学 精密工程, 2017, 25(2): 529-536.
SUI ZH SH, LI J SH, ZHANG J, et al . Video foreground detection of tensor low-rank representation and spatial-temporal sparsity decomposition[J]. Opt. Precision Eng. , 2017, 25(2): 529-536.
蔡强, 郝佳云, 曹健, 等.结合局部特征及全局特征的显著性检测[J].光学 精密工程, 2017, 25(3): 772-778.
CAI Q, HAO J Y, CAO J, et al . Salient detection via local and global feature[J]. Opt. Precision Eng ., 2017, 25(3): 772-778.
0
浏览量
105
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构