浏览全部资源
扫码关注微信
1.中国科学院 苏州生物医`学工程技术研究所 中国科学院生物医学检验技术重点实验室,江苏 苏州 215163
2.中国科学院大学 生命科学学院,北京 100049
3.中国科学技术大学,安徽 合肥 230026
[ "邱亚军 (1990-),男,宁夏西吉人,硕士研究生,2015年于中南民族大学获得学士学位,主要从事芯片PCR关键技术的研究。E-mail:qiuyajun15@mails.ucas.ac.cn" ]
收稿日期:2018-12-05,
录用日期:2019-1-2,
纸质出版日期:2019-06-15
移动端阅览
邱亚军, 李金泽, 李传宇, 等. 高通量数字化毛细管微阵列芯片[J]. 光学 精密工程, 2019,27(6):1237-1244.
Ya-jun QIU, Jin-ze LI, Chuan-yu LI, et al. High-throughput digital capillary microarray[J]. Optics and precision engineering, 2019, 27(6): 1237-1244.
邱亚军, 李金泽, 李传宇, 等. 高通量数字化毛细管微阵列芯片[J]. 光学 精密工程, 2019,27(6):1237-1244. DOI: 10.3788/OPE.20192706.1237.
Ya-jun QIU, Jin-ze LI, Chuan-yu LI, et al. High-throughput digital capillary microarray[J]. Optics and precision engineering, 2019, 27(6): 1237-1244. DOI: 10.3788/OPE.20192706.1237.
针对数字PCR体系样品的分割方式,开发了一款数字PCR体系样品分割芯片,用于微量生物样品检测。利用微机电系统(MEMS)制备阵列化的硅基片,采用硅片高效低损伤超精密磨削减薄工艺对硅基片进行减薄,结合化学改性方法,成功制备了表面疏水孔壁亲水的毛细管微阵列芯片。通过扫描电子显微镜(SEM)对芯片结构进行表征,SEM结果显示,芯片结构为通孔微阵列。通过接触角表征芯片表面的疏水性,对比化学处理前后芯片表面的接触角,结果表明化学处理后芯片表面疏水,接触角为118°。通过能谱(EDS)表征芯片孔壁的亲水性,结果表明,芯片孔壁只有Si,O两种元素,形成亲水基团,因此,芯片孔壁亲水。通过测量显微镜和荧光显微镜表征芯片的样品分割性能,结果表明芯片将样品分割为均一的独立单元。通过激光共聚焦扫描仪表征,直观地反应了芯片的整体样品分割效果,通过计算芯片的样品填孔率为93.8%。本文成功制备了表面疏水孔壁亲水的毛细管微阵列芯片,该芯片具有优异的样品分割性能,在生物医学领域具有广阔的应用前景。
A digital Polymerase Chain Reaction (PCR) system sample segmentation chip was developed for the "division" method for samples of a digital PCR system
and a capillary microarray was used for trace biological sample detection. First
arrayed silicon substrates were fabricated using Micro-electron-mechanical Systems(MEMS) technology
subsequently silicon wafers were thinned by the process of high-efficiency
low-damage
and ultra-precision grinding and then combined through chemical modification methods. A capillary microarray with a hydrophobic surface and hydrophilic inner wall was successfully prepared. The structure of the capillary microarray was characterized by scanning electron microscopy (SEM). SEM results showed that the structure of the capillary microarray is a through-hole microarray. The hydrophobicity of the surface of the capillary microarray was characterized by the contact angle
and the contact angles of the surface before and after chemical treatment were compared. The results show that the surface of the capillary microarray is hydrophobic after chemical treatment
and the contact angle is 118°. The hydrophilicity of the inner walls of the capillary microarray was characterized by an energy dispersive spectrometer (EDS). The results show that only Si and O elements are present in the inner walls of the capillary microarray
forming a hydrophilic group (—Si—OH). Thus
the inner walls of the capillary microarray were hydrophilic. The sample segmentation performance of the capillary microarray was characterized by measurement microscopy and fluorescence microscopy. The results show that the capillary microarray divided the sample into uniform independent units. Characterized by the laser confocal scanner
the overall sample segmentation effect of the capillary microarray is intuitively reflected
and the sample addition rate of the chip is 93.8% by counting and calculation. Finally
a capillary microarray chip with a hydrophobic surface and hydrophilic inner wall was successfully prepared and exhibited excellent sample segmentation performance
which offers broad application prospects for the field of biomedics.
吴太虎, 毛佳文, 陈锋, 等.痕量微生物快速检测系统[J].光学 精密工程, 2015, 23(11): 3061-3068.
WU T H, MAO J W, CHEN F, et al.. Rapid tracemicrobia detection system[J]. Opt. Precision Eng., 2015, 23(11): 3061-3068. (in Chinese)
KINZLER K W, VOGELSTEIN B. Digital PCR.Proc[J]. Natl. Acad. Sci., 1999, 96(6): 1-6.
POHL G, SHIH I M, POHL G. Principle and applications of digital PCR[J]. Expert Review of Molecular Diagnostics, 2004, 4(1): 41-47.
BIASSONI R, RASO A. Quantitative Real-Time PCR[M]. New York: Springer, 2014: 1064-3745
WANG J, RAMAKRISHNAN R, TANG Z, et al.. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays[J]. Clinical Chemistry, 2010, 56(4): 623-632.
SANMAMED M E, FERNANDEZ-LANDAZURI S, RODRIGUEZ C, et al.. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors[J]. Clinical Chemistry, 2015. 61(1): 297-304.
KAITU'U-LINO T J, HASTIE R, CANNON P, et al.. Stability of absolute copy number of housekeeping genes in preeclamptic and normal placentas, as measured by digital PCR[J]. Placenta, 2014, 35(12): 1106-1109.
MARQUES F Z, PRESTES P R, PINHEIRO L B, et al.. Measurement of absolute copy number variation reveals association with essential hypertension[J]. BMC Medical Genomics, 2014, 7(44): 1-8.
BHAT S, HERRMANN J, ARMISHAW P, et al.. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number[J]. Analytical and Bioanalytical Chemistry, 2009, 394(2): 457-467.
LO Y M D, LUN F M F, CHAN K C A, et al.. Digital PCR for the molecular detection of fetal chromosomal aneuploidy[J]. Proceedings of the National Academy of Sciences, 2007, 104(32): 13116-13121.
FAN H C, BLUMENFELD Y J, CHITKARA U, et al.. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood[J]. Proceedings of the National Academy of Sciences, 2008, 105(42): 16266-16271.
DENNIS LO Y M. Noninvasive prenatal diagnosis in 2020[J]. Prenatal Diagnosis, 2010, 30(7): 702-703.
BARRETT A N, CHITTY L S. Developing noninvasive diagnosis for single-gene disorders: the role of digital PCR[J]. Methods in Molecular Biology, 2014, 1160: 215-228.
BIZOUARN F. Clinical applications using digital PCR[J]. Methods in Molecular Biology, 2014, 1160: 189-214.
H ROBERTIS C, JIANG W, JAYARAMAN J, et al.. Killer-cell Immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR[J]. Genome Medicine, 2014, 6(3): 1-9.
TEWHEY R, WARNER, J B, NAKANO M, et al.. Microdroplet-based PCR enrichment for large-scale targeted sequencing[J]. Nature Biotechnology, 2009, 27(11): 1020-1025.
EASTBURN D J, HUANG Y, PELLEGRINO M, et al.. SMicrofluidic droplet enrichment for targeted sequencing[J]. Nucleic Acids Research, 2015, 43(13): 80-86.
FU Y S, LI C M, LU S J, et al.. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification[J]. Proceedings of the National Academy of Science, 2015, 112(38): 11923-11928.
BRENAN C, MORRISON T. High throughput, nanoliter quantitative PCR[J]. Drug Discovery Today: Technologies, 2005, 2(3): 247-253.
UNGER M A. Monolithic microfabricated valves and pumps by multilayer soft lithography[J]. Science, 2000, 288(5463): 113-116.
TAWFIK D S, GRIFFITHS A D. Man-made cell-like compartments for molecular evolution[J]. Nature Biotechnology, 1998, 16(7): 652-656.
ZHU Q Y, XU Y N, QIU L, et al.. A scalable self-priming fractal branching microchannel net chip for digital PCR[J]. Lab on a Chip, 2017, 17(9): 1655-1665.
THORSEN T. Microfluidic large-scale integration[J]. Science, 2002, 298(5593): 580-584.
HEYRIES K A, TROPINI C, VANINSBERGHE M, et al.. Megapixel digital PCR[J]. Nature Methods, 2011, 8(8): 649-651.
DU W B, LI L, NICHOLS K P, et al.. Slip chip[J]. Lab on a Chip, 2009, 9(16): 2286-2292.
MATSUBARA Y, KERMAN K, KOBAYASHI M, et al.. On-chip nanoliter-volume multiplex taqman polymerase chain reaction from a single copy based on counting fluorescence released microchambers[J]. Analytical Chemistry, 2004, 76: 1-6.
MATSUBARA Y, KERMAN K, KOBAYSHI M, et al.. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes[J]. Biosensors and Bioelectronics, 2005, 20(8): 1482-1490.
孔慧, 李传宇, 周连群, 等.薄膜谐振Lamb波传感器测量液体流速矢量的方法[J].光学 精密工程, 2017, 25(1): 155-162
KONG H, LI CH Y, ZHOU L Q, et al.. A method for fluid velocity vector measurement using thin film Lamb wave resonator[J]. Opt. Precision Eng., 2017, 25(1): 155-162. (in Chinese)
王永进, 张锋华, 高绪敏, 等.面向可见光波段的非周期悬空GaN薄膜光栅[J].光学 精密工程, 2017, 25(12): 3020-3026.
WANG Y J, ZHANG F H, GAO X M, et al.. Freestanding non-periodicGaN gratings in visible wavelength region[J]. Opt. Precision Eng., 2017, 25(12): 3020-3026. (in Chinese)
ZHU Q Y, QIU L, YU B W, et al.. Digital PCR on an integrated self-priming compartmentalization chip[J]. Lab on a Chip, 2014, 14(6): 1176-1185.
0
浏览量
121
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构