浏览全部资源
扫码关注微信
北京信息科技大学 仪器科学与光电工程学院,北京 100016
[ "何彦霖 (1988-),女,甘肃人,讲师,2011年于兰州交通大学获得工学学士和文学学士双学位,2018年于北京理工大学获得博士学位,主要从事光纤传感及其应用、智能材料微型机器人、软体机器人等方面的研究。E-mail:heyanlin@bit.edu.cn" ]
祝连庆 (1963-),男,浙江人,教授,北京学者,1982年、1989年于合肥工业大学分别获得学士、硕士学位,2013年于哈尔滨工业大学获得博士学位,主要从事软体机器人、光纤传感及光电精密测试技术等方面的研究。E-mail:zlq_2018@sina.com ZHU Lian-qing. E-mail:zlq_2018@sina.com
收稿日期:2018-12-24,
录用日期:2019-1-21,
纸质出版日期:2019-06-15
移动端阅览
何彦霖, 张旭, 孙广开, 等. 复合基底柔性光纤曲率传感器[J]. 光学 精密工程, 2019,27(6):1263-1269.
Yan-lin HE, Xu ZHANG, Guang-kai SUN, et al. Flexible curvature sensor based on composite substrate[J]. Optics and precision engineering, 2019, 27(6): 1263-1269.
何彦霖, 张旭, 孙广开, 等. 复合基底柔性光纤曲率传感器[J]. 光学 精密工程, 2019,27(6):1263-1269. DOI: 10.3788/OPE.20192706.1263.
Yan-lin HE, Xu ZHANG, Guang-kai SUN, et al. Flexible curvature sensor based on composite substrate[J]. Optics and precision engineering, 2019, 27(6): 1263-1269. DOI: 10.3788/OPE.20192706.1263.
为了实现生物医疗领域软体手术机器人等柔性机构的曲率测量,本文提出并设计了基于PVC(Polyvinyl Chloride,聚氯乙烯)和硅胶复合基底的光纤布拉格光栅柔性曲率传感器。将光纤光栅植入到硅胶片中,并将硅胶片粘贴在PVC基底的表面,形成基于PVC和硅胶复合基底的曲率传感器。使用标准曲率校准块对传感器进行了校准实验,测试不同曲率下传感器的反射光谱、波长漂移量等参数。为了证明PVC基底对植入在硅胶中FBG传感器的性能影响,对基于PVC和硅胶复合基底和基于硅胶基底的传感器进行了灵敏度和重复性的实验测试。实验结果表明:PVC基底可以提高植入硅胶中FBG曲率传感器的灵敏度和重复性,且基于PVC-硅胶复合基底的传感器灵敏度最高可达245.5 pm/m
-1
,偏差指数不足3%。该传感器在生物医学等软体机器人和柔性机构的曲率测量中具有广阔的应用前景。
To meet the demand for curvature measurements in the fields of intelligent biomedical equipment and soft robotics
among others
a flexible curvature sensor based on a polyvinyl chloride (PVC) and silicone composite substrate was proposed and has been designed. Firstly
a fiber Bragg grating (FBG) sensor was embedded into a silicone film
which was pasted onto the surface of a PVC substrate. Then
calibration experiments were carried out to evaluate the reflection spectrum and wavelength shift of the sensor. Finally
the sensitivity and repeatability of the sensor based on the composite and silicone substrates were tested experimentally. The experimental results show that the sensitivity and repeatability of the FBG curvature sensor can be improved by using a PVC-reinforced substrate. The maximum sensitivity of the FBG sensor with the composite substrate is 245.5 pm/m
-1
and its deviation index is less than 3%. The sensor has wide application prospects in the fields of soft robotics and biomedical curvature measurements.
HE Y L, ZHU L Q, SUN G K, et al.. Design, measurement and shape reconstruction of soft surgical actuator based on fiber bragg gratings[J]. Applied Sciences, 2018, 8: 1773.
SONG S, LI Z, YU H, et al.. Electromagnetic positioning for tip tracking and shape sensing of flexible robots[J]. IEEE Sensors Journal, 2015, 15(8): 4565-4575.
ASBECK A T, ROSSIS M M D, GALINA I, et al.. Stronger, smarter, softer: next-generation wearable robots[J]. IEEE Robotics & Automation Magazine, 2014, 21(4): 22-33.
ABAYAZID M, KEMP M, MISRA S. 3D flexible needle steering in soft-tissue phantoms using Fiber Bragg Grating sensors[C]. IEEE International Conference on Robotics and Automation. New York: IEEE, 2013: 5843-5849.
SUN G K, WU Y P, LI H, et al.. 3D shape sensing of flexible morphing wing using fiber Bragg grating sensing method[J]. Optik, 2018, 156: 83-92.
张开宇, 闫光, 孟凡勇, 等.温度解耦增敏式光纤光栅应变传感器[J].光学 精密工程, 2018, 26(6): 1330-1337.
ZHANG K Y, YAN G, MENG F Y, et al.. Temperature decoupling and high strain sensitivity fiber Bragg grating sensor[J]. Opt. Precision Eng., 2018, 26(6): 1330-1337.(in Chinese)
郭永兴, 熊丽, 孔建益, 等.滑动式光纤布拉格光栅位移传感器[J].光学 精密工程, 2017, 25(1): 50-58.
GUO Y X, XIONG L, KONG J Y, et al.. Sliding type fiber Bragg grating displacement sensor[J]. Opt. Precision Eng., 2017, 25(1): 50-58.(in Chinese)
娄小平, 陈仲卿, 庄炜, 等.非正交FBG柔杆空间形状重构误差分析及标定[J].仪器仪表学报, 2017, 38(2): 386-393.
LOU X P, CHEN Z Q, ZHUANG W, et al.. Error analysis and calibration for FBG shape reconstruction based on non-orthogonal curvatures[J]. Chinese Journal of Scientific Instrument, 2017, 38(2): 386-393. (in Chinese)
邹红波, 孙水发, 吉培荣.基于CLPG的FBG监测系统及其应用[J].仪器仪表学报, 2012, 33(7): 1567-1572.
ZHOU H B, SUN SH F, JI P R. FBG interrogation system based on CLPG and its application[J]. Chinese Journal of Scientific Instrument, 2012, 33(7): 1567-1572. (in Chinese)
TANG W, TIAN L, ZHAO X. Research on displacement measurement of disk vibration based on machine vision technique[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(8): 4173-4177.
KANG X, LI T, SIA B, et al.. A novel calibration method for arbitrary fringe projection profilometry system[J]. Optik-International Journal for Light and Electron Optics, 2017, 148: 227-237.
沈涛, 孙滨超, 冯月.马赫-曾德尔干涉集成化的全光纤磁场与温度传感器[J].光学 精密工程, 2018, 26(6): 1338-1345.
SHEN T, SUN B CH, FENG Y. Mach-Zehneder interference all-fiber sensor for measurement of magnetic field and temperature[J]. Opt. Precision Eng., 2018, 26(6): 1338-1345.(in Chinese)
王花平, 向平.基于应变传递理论的光纤传感器优化设计[J].光学 精密工程, 2016, 24(6):1233-1241.
WANG H P, XIANG P. Optimization design of optical fiber sensors based on strain transfer theory[J]. Opt. Precision Eng., 2016, 24(6):1233-1241. (in Chinese)
GE J, JAMES A E, XU L, et al.. Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2237-2240.
WESTBROOK, KREMP T, FEDER S, et al.. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 2017, 35(6): 1248-1252.
CHILDLERS B A, GIFFORS D K, DUNCAN R G, et al.. Fiber optic position and shape sensing device and method relating thereto: Google Patents[P]. 2005.
ZHAO Y, WANG C, YIN G, et al.. Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating[J]. Applied Optics, 2018, 57(7): 1671-1678.
TIAN Y, CHAI Q, TAN T, et al.. Directional bending sensor based on a dual side-hole fiber Mach-Zehnder interferometer[J]. IEEE Photonics Technology Letters, 2018, 30(4): 375-378.
YANG T T, XIE D, LI Z H, et al.. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance[J]. Materials Science and Engineering R: Reports, 2017, 115: 1-37.
0
浏览量
19
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构