浏览全部资源
扫码关注微信
1.中国科学院 苏州生物医学工程技术研究所,江苏 苏州 215000
2.中国科学技术大学,安徽 合肥 230000
3.宾夕法尼亚州立大学,美国 宾夕法尼亚州 19019
[ "张森浩(1996-),男,山西临汾人,硕士研究生,2017年于苏州大学机电工程学院获得学士学位,主要从事柔性传感器设计、制备与表征方面的研究。E-mail:zsh1996@mail.ustc.edu.cn" ]
[ "邱东海(1988-),男,浙江丽水人,机械工程,2018年于法国国立应用科学院与中国科学院大学获得双博士学位。E-mail:qiudh@sibet.ac.cn" ]
收稿日期:2018-12-24,
录用日期:2019-1-23,
纸质出版日期:2019-06-15
移动端阅览
张森浩, 邱东海, 衣宁, 等. 可穿戴柔性电子的快速制备与医疗应用[J]. 光学 精密工程, 2019,27(6):1362-1369.
Sen-hao ZHANG, Dong-hai QIU, Ning YI, et al. Rapid preparation and medical application of wearable flexible electronics[J]. Optics and precision engineering, 2019, 27(6): 1362-1369.
张森浩, 邱东海, 衣宁, 等. 可穿戴柔性电子的快速制备与医疗应用[J]. 光学 精密工程, 2019,27(6):1362-1369. DOI: 10.3788/OPE.20192706.1362.
Sen-hao ZHANG, Dong-hai QIU, Ning YI, et al. Rapid preparation and medical application of wearable flexible electronics[J]. Optics and precision engineering, 2019, 27(6): 1362-1369. DOI: 10.3788/OPE.20192706.1362.
为更好实现可穿戴柔性电子的初期设计和试验验证,提出了一种基于“切割和粘贴”的柔性电子快速制备方法。首先,通过对比光刻工艺与喷墨打印工艺,提出了一种基于激光切割的微纳图案化工艺;接着,利用调节聚二甲基硅氧烷(PDMS)基体的黏附力来控制能量释放率,将带图案的薄膜结构转印到弹性基底;然后,为保证金属电极与柔性基体间紧密贴合,采用PDMS对整体结构进行了封装;最后,搭建了多通道生理信号采集系统,对所加工柔性电极进行电生理测试与医疗探索。实验结果表明:与传统柔性电子加工工艺相比,文章提出的工艺效率较高,成本较低,可在10 min内完成整套工艺,同时制备的电子传感器件可以与皮肤保形接触且输出稳定信号,可为柔性电子的初期设计及后续产业化应用打下基础。
To realize the initial design and experimental verification of wearable flexible electronics
an electronic rapid preparation method based on "cutting and pasting" was proposed. First
a micro-nano patterning process based on laser cutting was presented by a comparison with photolithography and inkjet printing processes. The patterned film structure was then transferred to an elastic substrate by adjusting the adhesion of a polydimethylsiloxane (PDMS) substrate to control the energy release rate. To ensure a close fit between the metal electrode and the flexible substrate
the overall structure was packaged by PDMS. Finally
a multichannel physiological signal acquisition system was built to enable electrophysiological testing and medical exploration. Compared with the traditional flexible electronic processing technology
the proposed method was more efficient and cheaper. In addition
the flexible electronic sensor was in conformal contact with skin and generated a stable signal. This investigation outlines the preliminary foundation and initial design for flexible electronics and their industrial applications.
ROGERS J A, SOMEYA T. Materials and mechanics for stretchable electronics[J]. Science , 2010, 327(5973):1603-1607.
KIM D H, LU N, MA R, et al .. Epidermal electronics[J]. World Neurosurgery , 2011, 76(6):485.
夏凯伦, 蹇木强, 张莹莹.纳米碳材料在可穿戴柔性导电材料中的应用研究进展[J].物理化学学报, 2016, 32(10):2427-2446.
XIA K L, JIAN M Q, ZHANG Y Y. Research progress in application of nano carbon materials in wearable flexible conductive materials[J]. Acta Physico-Chimica Sinica. 2016, 32(10):2427-2446.(in Chinese)
ZANG Y, ZHANG F, DI C A, et al.. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Mater. Horiz . 2015, 2(2):140-156.
PENG P, WU K, LV L, et al.. One-step selective adhesive transfer printing for scalable fabrication of stretchable electronics[J]. Advanced Materials Technologies , 2018:1700264.
尹周平, 黄永安.柔性电子制造:材料、器件与工艺[M].北京:科学出版社, 2016.
YIN ZH P, HUANG Y A. Flexible Electronics Manufacturing: Materials, Devices and Processes [M]. Beijing:Science Press, 2016. (in Chinese)
YANG D, MOSADEGH B, AINLA A, et al.. Actuators: buckling of elastomeric beams enables actuation of soft machines (Adv. Mater. 41/2015)[J]. Advanced Materials, 2015, 27(41):6305-6305.
王国彪.纳米制造前沿综述[M].北京:科学出版社, 2009.
WANG G B. Review of the Frontiers of Nanofabrication [M]. Beijing:Science Press, 2019. (in Chinese)
AHN B Y, DUOSS E B, MOTALA M J, et al .. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes[J]. Science, 2009, 323(5921):1590-1593.
SUN DH, CHANG C, LI, et al.. Near-field electrospinning[J]. Nano Letters, 2006, 6(4):839.
CUI Z, HAN Y, HUANG Q, et al. . Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics[J]. Nanoscale, 2018:10.1039.
CARLSON A, BOWEN A M, HUANG Y, et al. . Transfer printing techniques for materials assembly and micro/nanodevice fabrication[J]. Advanced materials (Deerfield Beach, Fla.) , 2012, 24(39):5284-5318.
YAN Z, PAN T, XUE M, et al.. Thermal release transfer printing for stretchable conformal bioelectronics[J]. Advanced Science , 2017, 4(11):1700251.
JEONG J W, KIM M K, CHENG H, et al.. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements[J]. Advanced Healthcare Materials, 2014, 3(5):642-648.
WEBB R C, BONIFAS A P, BEHNAZ A, et al. . Ultrathin conformal devices for precise and continuous thermal characterization of human skin[J]. Nature Materials, 2013, 12(10):938-944.
CHENG H, ZHANG Y, XIAN H, et al.. Analysis of a concentric coplanar capacitor for epidermal hydration sensing[J]. Sensors & Actuators A Physical , 2013, 203(6):149-153.
孟莹.基于柔性MEMS干电极阵列的智能心电监护系统关键技术研究[D].上海: 上海交通大学, 2015.
MENG Y. Research on Key Technology of Intelligent ECG Monitoring System Based on Flexible MEMS Dry Electrode Array [D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
SHIN Y S, CHO K, LIM S H, et al. . PDMS-based micro PCR chip with Parylene coating[J]. Journal of Micromechanics & Microengineering , 2003, 13(5):768-774.
段鹤.电偶极子模型及其应用[J].齐齐哈尔大学学报:自然科学版, 2011(2):40-43.
DUAN H. Model and application of electric dipole[J]. Journal of Qiqihar University:Natural Science Edition, 2011(2):40-43. (in Chinese)
王平, 刘清君.生物医学传感与检测[M].杭州:浙江大学出版社, 2011.
WANG P, LIU Q J. Biomedical Sensing and Detection [M]. Hangzhou: Zhejiang University press, 2011. (in Chinese)
杨斌, 董永贵.电容耦合非接触电极及心电信号获取[J].仪器仪表学报, 2015, 36(5):1072-1078.
YANG B, DONG Y G.Capacitively coupled non-contact electrode and ECG signal acquisition[J]. Chinese Journal of Scientific Instrument, 2015, 36(5):1072-1078. (in Chinese)
0
浏览量
12
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构