浏览全部资源
扫码关注微信
1.中国科学院 近代物理研究所,甘肃 兰州 730000
2.中国科学院大学,北京 100049
3.甘肃省重离子束辐射医学应用基础重点实验室,甘肃 兰州 730000
4.中国科学院 重离子束辐射生物医学重点实验室,甘肃 兰州 730000
[ "申国盛(1984-),男,河南唐河人,博士研究生,助理研究员,2007年于桂林电子科技大学获得学士学位,2011年于华中师范大学获得硕士学位,主要从事医学图像处理,图像引导放射治疗方面研究。E-mail:sgs2005@impcas.ac.cn" ]
收稿日期:2019-03-19,
录用日期:2019-4-25,
纸质出版日期:2019-06-15
移动端阅览
申国盛. 普通摄像机图像引导的放射治疗技术[J]. 光学 精密工程, 2019,27(6):1405-1415.
Guo-sheng SHEN. Technique of image guided radiotherapy with conventional video cameras[J]. Optics and precision engineering, 2019, 27(6): 1405-1415.
申国盛. 普通摄像机图像引导的放射治疗技术[J]. 光学 精密工程, 2019,27(6):1405-1415. DOI: 10.3788/OPE.20192706.1405.
Guo-sheng SHEN. Technique of image guided radiotherapy with conventional video cameras[J]. Optics and precision engineering, 2019, 27(6): 1405-1415. DOI: 10.3788/OPE.20192706.1405.
图像引导放疗是精准放疗的关键点之一,常规利用X射线的图像引导技术在使用时会带给患者额外的辐射剂量,因此本文研究了一种没有任何副作用的普通摄像机图像引导放疗的技术。将3台普通摄像机安装在实验室内,获取摄像机实时图像,通过设计的自适应背景剔除算法删除图像背景获取感兴趣区域(ROI),在ROI图像内使用本文改进的ORB角点提取配准算法获取患者实时摆位信息,引导并验证患者摆位。设计光学图像提取患者呼吸信号算法引导运动器官肿瘤的治疗。将一套放疗用热塑膜固定的仿真体模放置在实验室中模拟患者治疗,通过多次测试,证明了本技术患者摆位偏移量精度为1 mm和1°。通过一套呼吸运动模拟装置测试本文设计的呼吸运动信号提取算法,获得的呼吸运动信号和设定的信号在时间和幅度上达到96%以上的符合度。通过实验室内体模的测试,本技术基本满足图像引导放疗的技术要求。
Image guidance plays a major role in precision radiotherapy. Because conventional X-ray image guided techniques used in radiotherapy deliver additional doses to patient
an image guided radiation therapy (IGRT) technique using conventional video cameras that does not cause harm to the patient was investigated in this study. Three conventional video cameras were installed in different directions to acquire real-time images. The backgrounds of the images were deleted using an adaptive background removal algorithm designed in this study
and then the region of interest was obtained. Real-time patient positioning information could be achieved using an oriented FAST and rotated BRIEF algorithm that we modified. Respiratory signals were derived from the real-time images of the conventional video cameras using an algorithm we designed. A plastic patient model immobilized with a thermoplastic shell on a simulation couch was used to verify the accuracy and feasibility of our method. Test results show that the position and angle offset errors identified with our system are less than 1 mm and 1°
respectively. A respiratory motion simulator is designed and used to test the respiratory signal acquirement algorithm we designed. The time and amplitude conformity of the respiratory signals between the setting and acquirement is better than 96%. In our laboratory tests
the developed IGRT technique is shown to satisfy the requirements of image guided radiotherapy.
BAUMANN M, KRAYSE M, OVERGAARD J, et al . Radiation oncology in the era of precision medicine[J]. Nature Reviews Cancer, 2016, 16: 234-249.
JAFFRAY D A. Image-guided radiotherapy: from current concept to future perspectives[J]. Nature Reviews Clinical Oncology, 2012, 9: 688-699.
JOHN GORDON ELEY, WAYNE DAVID NEWHAUSER, ROBERT LUCHTENBORG, et al .4D optimization of scanned ion beam tracking therapy for moving tumors[J]. Phys. Med. Biol., 2014, 59: 3431-3453.
YUGANG MIN, ANAND SANTHANAM, HARINI NEELAKKANTAN, et al. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion[J]. Phys. Med. Biol., 2010, 55:5137-5150.
BAUMANNM, OVERGAARD J. Bridging the valley of death: The new Radiotherapy & Oncology section "First in man-Translational innovations in radiation oncology"[J]. Radiotherapy and Oncology, 2016, 118: 217-219.
PHILIPP J SCHÖFFERL, WOLFAGAN HARMS, GABRIELE SEOKA-PERER2, et al .Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax[J]. Phys. Med. Biol., 2007, 52: 3949-3963.
SORENSEN S, MITSCHKE M, SOLBERG T. Cone-beam CT using a mobile C-arm: a registration solution for IGRT with an optical tracking system[J]. Phys. Med. Biol., 2007, 52:3389-3404.
侯榆青, 贾涛, 易黄建, 等.基于改进谱投影梯度算法的X射线发光断层成像[J].光学 精密工程, 2017, 25(1): 42-49.
HOU Y Q, JIA T, YI H J, et al. X-ray luminescence computed tomography based on improved spectral projected gradient algorithm[J]. Opt. Precision Eng., 2017, 25(1): 42-49.(in Chinese)
THOMAS GUERRERO, GEOFFREY ZHANG, TZUNG-CHI HUANG, et al . Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method[J]. Phys. Med. Biol., 2004, 49: 4147-4161.
X ALLEN LI. Adaptive Radiation Therapy [M]. Boca Raton, London, New York:CRC Press, 2011.
JAN EHRHARDT, CRISTIAN LORENZ. 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy [M]. Heidelberg, New York, Dordrecht, London: Springer, 2013.
孟晓亮, 于晓洋, 吴海滨, 等.基于三维傅里叶变换的胸腹表面测量[J].光学 精密工程, 2018, 26(4): 778-787.
MENG X L, YU X Y, WU H B, et al. Measurement of thoraco-abdominal surface using 3D Fourier transform[J]. Opt. Precision Eng., 2018, 26(4): 778-787. (in Chinese)
THOMAS GUERRERO, GEOFFREY ZHANG, TZUNG-CHI HUANG, et al. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method[J]. Phys. Med. Biol., 2004, 49:4147-4161.
JÖEL SCHAERER, AURORA FASSI, MARCO RIBOLDI, et al . Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration[J]. Phys. Med. Biol., 2012, 57:357-373.
BERTL C, DURANTE M. Motion in radiotherapy: particle therapy[J]. Phys. Med. Biol., 2011, 56:R113-R144.
PRICE G J, PARKHURST J M, SHARROCK P J, et al . Real-time optical measurement of the dynamic body surface for use in guided radiotherapy[J]. Phys. Med. Biol., 2012, 57:415-436.
RUIJIANG LI, JOHN H LEWIS, ROSS I BERBECO, et al. Real-time tumor motion estimation using respiratory surrogate via memory-based learning[J]. Phys. Med. Biol., 2012, 57:4771-4786.
HIROHIKO TSUJI·TADASHI KAMADA, TOSHIYUKI SHIRAI·KOJI NODA, HIROSHI TSUJI·KUMIKO KARASAWA. Carbon-Ion Radiotherapy Principles, Practices, and Treatment Planning [M]. Heidelberg, New York, Dordrecht, London: Springer, 2014.
DANIEL BOURLAND J. Image-Guided Radiation Therapy [M]. Boca Raton, London, New York:CRC Press, 2012.
李云雷, 张曦, 屠大维.基于立体定向靶标的探针式多视场三维视觉测量系统[J].光学 精密工程, 2019, 27(1): 34-44.
LI Y L, ZHANG X, TU D W. Probe-based multi-view field 3D vision measurement system based on three-dimensional orientation target[J]. Opt. Precision Eng., 2019, 27(1): 34-44.(in Chinese)
魏彤, 周银鹤.基于机器学习识别与标记分水岭分割的盲道图像定位[J].光学 精密工程, 2019, 27(1): 201-210.
WEI T, ZHOU Y H. Blind sidewalk image location based on machine learning recognition and marked watershed segmentation[J]. Opt. Precision Eng., 2019, 27(1): 201-210. (in Chinese)
王洪庆, 许廷发, 孙兴龙, 等.目标运动轨迹匹配式的红外-可见光视频自动配准[J].光学 精密工程, 2018, 26(6): 1533-1541.
WANG H Q, XU T F, SUN X L, et al . Infrared-visible video registration with matching motion trajectories of targets[J]. Opt. Precision Eng., 2018, 26(6): 1533-1541.(in Chinese)
耿庆田, 赵浩宇, 王宇婷, 等.基于改进SIFT特征提取的车标识别[J].光学 精密工程, 2018, 26(5): 1267-1274.
GENG Q T, ZHAO H Y, WANG Y T, et al . A vehicle logo recognition algorithm based on the improved SIFT feature[J]. Opt. Precision Eng., 2018, 26(5): 1267-1274. (in Chinese)
ETHAN RUBLEE, VINCENT RABAUD, KURT KONOLIGE, et al . ORB: an efficient alternative to SIFT or SURF[C]. 2011 International Conference on Computer Vision , 2011, 8: 2564-2571. http://www.willowgarage.com/sites/default/files/orb_final.pdf
MICHAEL CALONDER, VINCENT LEPETI, CHRISTON STRECHA, et al . BRIEF: Binary robust independent elementary features[C]. ECCV , 2010, 3: 1264-1271. https://www.cs.ubc.ca/~lowe/525/papers/calonder_eccv10.pdf
0
浏览量
173
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构