浏览全部资源
扫码关注微信
1.厦门大学 航空航天学院,福建 厦门 361005
2.中国工程物理研究院 激光聚变研究中心,四川 绵阳 610041
[ "毕果 (1978-),女,河南南阳人,博士,副教授,2000年、2003年于郑州大学分别获得学士、硕士学位,2007年于上海交通大学获得博士学位,主要从事精密加工过程监测等方面的研究。E-mail:guobi@xmu.edu.cn" ]
[ "王惠雪(19-),女,福建漳州人,硕士研究生,主要从事精密加工、在线监测等方面的研究。E-mail:15759219774@163.com" ]
收稿日期:2019-01-02,
录用日期:2019-2-13,
纸质出版日期:2019-07-15
移动端阅览
毕果, 王惠雪, 周炼, 等. 金刚石砂轮磨削性能退化评估[J]. 光学 精密工程, 2019,27(7):1508-1515.
Guo BI, Hui-xue WANG, lian ZHOU, et al. Gringing performance degradation of diamond wheel[J]. Optics and precision engineering, 2019, 27(7): 1508-1515.
毕果, 王惠雪, 周炼, 等. 金刚石砂轮磨削性能退化评估[J]. 光学 精密工程, 2019,27(7):1508-1515. DOI: 10.3788/OPE.20192707.1508.
Guo BI, Hui-xue WANG, lian ZHOU, et al. Gringing performance degradation of diamond wheel[J]. Optics and precision engineering, 2019, 27(7): 1508-1515. DOI: 10.3788/OPE.20192707.1508.
为了提取高精度磨削干涉中的声发射信号特征,实现砂轮磨削性能退化评估,针对熔石英开展全寿命周期金刚石砂轮磨削实验,基于小波包分析确定砂轮磨损敏感频段为低频段,然后计算声发射信号在低频段的归一化能量占比,再利用主成分分析对能量占比进行特征降维获得单值特征,利用该单值特征绘制砂轮磨削性能退化曲线。研究结果表明,监测特征能够清晰反映砂轮初期磨损、正常磨损和过度磨损三个阶段,且监测结果不受加工参数影响;砂轮磨削材料破裂尺度与声发射频率具有一定关系,伴随砂轮磨损的加剧,较大尺度破裂的比例上升,造成65 kHz以下低频段特征的能量占比增大,监测特征显著增加,磨粒崩碎产生新的切削刃,砂轮的去除能力有所改善,监测特征数值回落,但是,不同样本的声发信号频谱差异性显著增加,说明砂轮加工状态不稳定,不利于精密与超精密加工中维持稳定质量的要求。砂轮形貌图像的白像素占比变化曲线验证了声发射特征对砂轮磨损状态判断的正确性。
Acoustic emission is the most direct and sensitive characterization of grinding interference. Therefore
to ensure high-precision grinding
acoustic emission signals were used to evaluate the degradation in grinding performance of a diamond wheel. A fused silica grinding experiment was conducted using a newly trimmed diamond grinding wheel to record the acoustic emission signal and surface morphology of the grinding wheel during its life cycle. A wavelet packet analysis was used to determine the typical low-frequency band of the abrasive wear of the grinding wheel. The frequency energy ratio was then extracted by using principal component analysis to characterize the degradation of grinding wheel grinding performance. The results showed that the acoustic emission frequency energy ratio was completely independent of the processing parameters. As the abrasive wear of the grinding wheel intensified
both the proportion of large-scale rupture and the amplitude of the corresponding low-frequency characteristic increased. When the abrasive particles were worn to the limit
the abrasive grain was broken to produce a new cutting edge
improving the removal ability of the grinding wheel
but the variance of the spectrum was significantly increased
inhibiting the wheel from maintaining a stable quality in ultra-precision machining. The variation of the white pixel ratio of the grinding wheel shape image verified the correctness of the acoustic emission signal analysis results.
KARPUSCHEWSKI B, WEHMEIER M, INASAKI I. Grinding monitoring system based on power and acoustic emission sensors[J]. CIRP Annals , 2000, 49(1): 235-240.
LEE D E, HWANG I, VALENTE C M O, et al .. Precision manufacturing process monitoring with acoustic emission[J]. International Journal of Machine Tools and Manufacture , 2006, 46(2): 176-188.
毕果, 许涛林, 彭云峰, 等. BK7光学玻璃金刚石划刻声发射信号的特征提取[J].光学精密工程, 2017, 25(4): 934-942.
BI G, XU T L, PENG Y F, et al .. Feature extraction of acoustic emission signal for diamond scratching of optical glass BK7[J]. Opt . Precision Eng ., 2017, 25(4): 934-942. (in Chinese)
DING N, ZHAO C L, LUO X C, et al .. An intelligent grinding wheel wear monitoring system based on acoustic emission[J]. Solid State Phenomena , 2017, 261: 195-200.
郭力, 邓喻, 霍可可.氧化铝陶瓷磨削金刚石砂轮磨损的声发射监测[J].湖南大学学报:自然科学版, 2018, 45(4): 34-40.
GUO L, DENG Y, HUO K K. Acoustic emission monitoring of diamond wheel wear with grinding alumina ceramics grinding[J]. Journal of Hunan University : Natural Sciences , 2018, 45(4): 34-40. (in Chinese)
王洪雨, 姚振强, 许胜.基于声发射技术的砂轮磨损实验研究[J].组合机床与自动化加工技术, 2018(8): 33-37.
WANG H Y, YAO ZH Q, XU SH. Experimental study of grinding wheel wear process based on acoustic emission technology[J]. Modular Machine Tool & Automatic Manufacturing Technique , 2018(8): 33-37. (in Chinese)
YANG Z S, YU Z H. Grinding wheel wear monitoring based on wavelet analysis and support vector machine[J]. The International Journal of Advanced Manufacturing Technology , 2012, 62(1/2/3/4): 107-121.
操礼林, 李爱群, 邓扬, 等.声发射和小波包分析在损伤状态监测中的应用[J].振动、测试与诊断, 2012, 32(4): 591-595, 688-689.
CAO L L, LI A Q, DENG Y, et al .. Combined application of acoustic emission and wavelet packet analysis on damage condition monitoring of structures[J]. Journal of Vibration, Measurement & Diagnosis , 2012, 32(4): 591-595, 688-689. (in Chinese)
林盖, 林述温.基于主成分分析的高速铣削振动特性研究[J].机械制造与自动化, 2018, 47(5): 28-32.
LIN G, LIN SH W. Research on vibration characteristics in high speed milling based on principal component analysis[J]. Machine Building & Automation , 2018, 47(5): 28-32. (in Chinese)
BENSON P M, VINCIGUERRA S, MEREDITH P G, et al .. Laboratory simulation of volcano seismicity[J]. Science , 2008, 322(5899): 249-252.
刘希灵, 王金鹏, 李夕兵, 等.压缩与劈裂条件下矿岩声发射信号的频率特性[J].实验力学, 2018, 33(2): 201-208.
LIU X L, WANG J P, LI X B, et al .. On the frequency characteristics of ore's acoustic emission signal in uniaxial compression and Brazilian splitting test[J]. Journal of Experimental Mechanics , 2018, 33(2): 201-208. (in Chinese)
LACIDOGNA G, SCHIAVI A, NICCOLINI G, et al .. Analysis of acoustic emissions at low frequencies in brittle materials under compression[J]. Proceedings of the SEM Annual Conference , June 1-4, 2009.
朱爱斌, 胡浩强, 何大勇, 等.采用频域融合方法的砂轮刀具磨损三维重构技术[J].西安交通大学学报, 2015, 49(5): 82-86, 133.
ZHU A B, HU H Q, HE D Y, et al .. Three-dimensional reconstruction of tool wear area for grinding wheel using frequency-domain fusion method[J]. Journal of Xi'an Jiaotong University , 2015, 49(5): 82-86, 133. (in Chinese)
GOPAN V, WINS K L D. Quantitative analysis of grinding wheel loading using image processing[J] . Procedia Technology , 2016, 25: 885-891.
FENG Z, CHEN X. Image processing of grinding wheel surface[J]. The International Journal of Advanced Manufacturing Technology , 2007, 32(1/2): 27-33.
0
浏览量
153
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构