浏览全部资源
扫码关注微信
华侨大学 信息科学与工程学院,福建 厦门 361000
[ "王荣坤(1986-),男,福建泉州人,博士,讲师,硕士生导师,2008年于福州大学获得学士学位,2013年于中国科学院近代物理研究所获得博士学位,主要从事电气传动与电能变换技术方面的研究。E-mail: wangrongkun@hqu.edu.cn" ]
[ "于作超(1996-),男,吉林扶余人,学士,2018年于郑州大学获得学士学位,主要从事电气传动与电能变换技术方面的研究。E-mail: playful1996@qq.com" ]
收稿日期:2019-01-30,
录用日期:2019-3-6,
纸质出版日期:2019-07-15
移动端阅览
王荣坤, 于作超, 王杰.
Rong-kun WANG, Zuo-chao YU, Jie WANG. Active compensation of contour error of
王荣坤, 于作超, 王杰.
Rong-kun WANG, Zuo-chao YU, Jie WANG. Active compensation of contour error of
为了减小
X
-
Y
直线电机精密运动平台同步控制的轮廓误差,提高系统的控制精度,针对传统交叉耦合控制结构的不足,提出多电机控制系统的轮廓误差主动补偿结构。首先,以永磁同步直线电机为例分析单轴伺服定位跟踪误差,指出跟踪误差和位置参考有关,结合实际工况中参考指令的扰动,将耦合补偿量最终统一为参考指令的校正加入到系统中,提出轮廓误差主动补偿结构,将轮廓误差补偿量分别补偿到各轴伺服的位置环和速度环,并通过仿真和实验进行验证。结果表明:采用主动补偿方法的
X
-
Y
两轴运动平台跟踪大曲率复杂轨迹的轮廓误差平均值为20.68 μm;单轴跟踪误差最大值为70 μm。相比传统交叉耦合控制结构,主动补偿结构轮廓误差精度提高了15.5%,同时降低了单轴的跟踪误差,并能抑制参考指令扰动。
To address the deficiencies of the traditional cross-coupling control structure
an active compensation control structure was proposed in this study to reduce the contour error of an
X
-
Y
linear motor precision motion platform. First
a permanent magnet synchronous linear motor was used to analyze the single-axis positioning tracking error
where the tracking error was related to the position reference. Therefore
adjustment to the amount of coupling compensation to the reference instruction was added to the system
which considered the disturbance of the reference command in the actual working condition. The contour error components were compensated to the position and speed loops of each axis servo and verified by a simulation and an experiment. Results show that the average value of the contour error of the
X
-
Y
axis motion platform when tracking a large curvature complex track using an active compensation method is 20.68 μm. The single-axis tracking error is 70 μm. Compared with the traditional cross-coupling control structure
the accuracy of the active compensation structure contour error is improved by 15.5%
the single-axis tracking error is reduced
and the reference command disturbance can be suppressed.
赵吉文, 窦少昆, 赵静, 等.散斑运动模糊复原的直线电机动子位置检测[J].光学 精密工程, 2018, 26(2): 363-370.
ZHAO J W, DOU S K, ZHAO J, et al .. Osition measurement of linear electric motor rotor based on restoration of motion blur speckle[J]. Opt. Precision Eng ., 2018, 26(2): 363-370. (in Chinese)
林献坤, 于垂顺, 李郝林. 2X/Y直线进给轴直线轮廓误差的学习补偿方法[J].光学 精密工程, 2011, 19(5): 1048-1053.
LIN X K, YU CH SH, LI H L. Learning-based linear contour error compensation method for 2X/Y-type linear feed axes[J]. Opt. Precision Eng ., 2011, 19(5): 1048-1053. (in Chinese)
CHEN W, WANG D D, GENG Q, et al .. Robust adaptive cross-coupling position control of biaxial motion system[J]. Science China Technological Sciences, 2016, 59(4): 680-688.
KOREN Y. Cross-coupled biaxial computer control for manufacturing systems[J]. Journal of Dynamic Systems, Measurement, and Control , 1980, 102(4): 265-272.
武志涛, 杨永辉.直线电机驱动XY平台精密轮廓跟踪控制[J].中国电机工程学报, 2018, 38(19): 5863-5868, 5944.
WU ZH T, YANG Y H. Precise contour tracking control for linear motor drive XY tables[J]. Proceedings of the CSEE , 2018, 38(19): 5863-5868, 5944. (in Chinese)
王丽梅, 张宗雪. H型精密运动平台交叉耦合模糊PID同步控制[J].沈阳工业大学学报, 2018, 40(1): 1-5.
WANG L M, ZHANG Z X. Cross-coupled fuzzy PID synchronous control for H-type precision motion platform[J]. Journal of Shenyang University of Technology , 2018, 40(1): 1-5. (in Chinese)
金鸿雁, 赵希梅.双直线电机伺服系统Elman神经网络互补滑模交叉耦合同步控制[J].电工技术学报, 2018, 33(21): 4971-4978.
JIN H Y, ZHAO X M. Synchronous control of Elman neural network complementary sliding mode and cross-coupled control for dual linear motors servo system[J]. Transactions of China Electrotechnical Society , 2018, 33(21): 4971-4978. (in Chinese)
陈炜, 刘旭, 史婷娜, 等.双轴联动系统广义预测交叉耦合位置控制[J].控制理论与应用, 2018, 35(3): 399-406.
CHEN W, LIU X, SHI T N, et al .. Generalized predictive cross-coupling position control of biaxial motion system[J]. Control Theory & Applications , 2018, 35(3): 399-406. (in Chinese)
LIU Y J, LIANG L, CHU T T, et al .. N-PD cross-coupling synchronization control based on adjacent coupling error analysis[J]. Journal of Central South University , 2018, 25(5): 1154-1164.
吕贵涛.基于轮廓误差的新型混联式汽车电泳涂装输送机构同步协调控制研究[D].镇江: 江苏大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10299-1017717976.htm
LV G T. Synchronous coordination control of a novel hybrid mechanism for automobile electro-coating conveying based on contour error [D]. Zhenjiang: Jiangsu University, 2017. (in Chinese)
吴达伟.永磁同步直线电机的参数辨识及前馈控制技术研究[D].杭州: 浙江理工大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10338-1018047192.htm
WU D W. Parameter identification and feedforward control of permanent magnet synchronous linear motor [D]. Hangzhou: Zhejiang Sci-Tech University, 2018. (in Chinese)
赵希梅, 吴勇慷.基于多阶段速度规划的PMLSM自适应反推滑模控制[J].电工技术学报, 2018, 33(3): 662-669.
ZHAO XIMEI WU YONGKANG. Adaptive backstepping sliding mode control for PMLSM based on multi-segment velocity planning[J]. Transactions of China Electrotechnical Society , 2018, 33(3): 662-669. (in Chinese)
汪兆栋.基于永磁同步电机的单转子变频压缩机控制技术研究[D].广州: 华南理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10561-1017734183.htm
WANG ZH D. Research on control technology for single rotor frequency conversion compressor of permanent magnet synchronous motor [D]. Guangzhou: South China University of Technology, 2017. (in Chinese)
孙开珊.多轴空间轮廓误差的建模与交叉耦合补偿[D].武汉: 华中科技大学, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D090781
SUN K SH. Modeling of spatial contour error and compensation with cross-coupled controller in multi-axis machining [D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)
0
浏览量
8
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构