浏览全部资源
扫码关注微信
河南科技大学 机电工程学院,河南 洛阳 471003
[ "徐彦伟(1978-),男,河南洛阳,博士,副教授,中国仪器仪表学会精密机械分会第七届理事,2006年于河南科技大学获得硕士学位,2010年于天津大学获得博士学位,主要从事制造装备精度设计与检测方面的研究。E-mail:xuyanweiluoyang@163.com" ]
收稿日期:2018-11-23,
录用日期:2019-3-18,
纸质出版日期:2019-07-15
移动端阅览
徐彦伟, 刘明明, 刘洋, 等. 基于信息融合的机器人薄壁轴承故障智能诊断[J]. 光学 精密工程, 2019,27(7):1577-1592.
Yan-wei XU, Ming-ming LIU, Yang LIU, et al. Intelligent fault diagnosis of thin wall bearing based on information fusion[J]. Optics and precision engineering, 2019, 27(7): 1577-1592.
徐彦伟, 刘明明, 刘洋, 等. 基于信息融合的机器人薄壁轴承故障智能诊断[J]. 光学 精密工程, 2019,27(7):1577-1592. DOI: 10.3788/OPE.20192707.1577.
Yan-wei XU, Ming-ming LIU, Yang LIU, et al. Intelligent fault diagnosis of thin wall bearing based on information fusion[J]. Optics and precision engineering, 2019, 27(7): 1577-1592. DOI: 10.3788/OPE.20192707.1577.
为了实现轴承故障智能诊断,对基于信息融合的机器人薄壁轴承故障智能诊断方法进行研究。首先,采用声发射和振动传感器,搭建了机器人薄壁轴承试验与多信息数据采集系统;然后,以薄壁单列角接触球轴承ZR71820为对象,在轴承外圈、内圈和滚动体上分别制作点蚀、裂纹缺陷,用正交试验法采集不同缺陷类型、不同当量载荷及不同转速状态下薄壁轴承在试验过程中的声发射和振动信号;最后,选取时域中均方根值和峭度指数及频域中均方根频率作为振动、声发射信号的特征参数,分别进行了基于单一振动、声发射信号的薄壁轴承故障诊断,并采用SOM与BP神经网络将试验过程中的振动和声发射信号的特征信息进行融合,研究了基于信息融合的机器人薄壁轴承故障智能诊断技术。结果表明:基于振动信号故障诊断的正确率为85.7%;基于声发射信号故障诊断的正确率为81.0%;基于BP神经网络信息融合故障诊断的正确率为93.5%;基于SOM神经网络信息融合故障诊断的正确率为95.2%。基于SOM神经网络信息融合的薄壁轴承故障智能诊断比单用振动或声发射信号的诊断正确率分别高出9.5%和14.2%,比用BP神经网络信息融合故障诊断的正确率高1.7%。
To realize the intelligent diagnosis of bearing faults
an intelligent fault diagnosis method for the thin-wall bearing of a robot based on information fusion was studied. First
a test and multi-information data acquisition system of the thin-wall bearing of a robot was built by acquiring acoustic emission and vibration acceleration signals. Then
data from acoustic emission and vibration acceleration signals detected during the test of thin-wall bearing under different fault types
equivalent loads
and rotational speeds were obtained using an orthogonal experimental method. A thin-wall single-row angular contact ball bearing (ZR71820) was used as the research object
and pitting and micro-crack defects were produced on the bearing outer ring
inner ring
and rolling bod. Finally
the root mean square value and kurtosis index in the time domain
as well as the root mean square frequency in the frequency domain
were selected as the characteristic parameters of the vibration and acoustic emission signals. Fault diagnosis of thin-wall bearings based on single vibration or acoustic emission signals was conducted. In addition
an intelligent fault diagnosis of thin-wall bearings were researched based on the fusion characteristics of acoustic emission and vibration acceleration signals using Self-Organization feature Map (SOM) and Back-Propagation (BP) neural networks. Experimental results indicate that the accuracies of fault diagnoses based on vibration signals
acoustic emission signals
and BP and SOM neural network information fusion are 85.7%
81.0%
93.5%
and 95.2%
respectively. The accuracy of intelligent fault diagnosis based on SOM neural network information fusion of the thin-wall bearing is 9.5%
14.2%
and 1.7% higher than that of single vibration
acoustic emission signals
and BP neural network information fusion
respectively.
王田苗, 陶永.我国工业机器人技术现状与产业化发展战略[J].机械工程学报, 2014, 50(9): 1-13.
WANG T M, TAO Y. Research status and industrialization development strategy of Chinese industrial robot[J]. Chinese Journal of Mechanical Engineering , 2014, 50(9): 1-13. (in Chinese)
HE Q B, WANG J, HU F, et al .. Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement[J]. Journal of Sound and Vibration , 2013, 332(21): 5635-5649.
邱明, 郑昊天, 陈龙, 等.机器人用薄壁角接触球轴承动态特性分析[J].机械设计与制造, 2017(9): 250-253.
QIU M, ZHENG H T, CHEN L, et al .. Analysis on dynamic characteristics of thin-section angular contact ball bearings for robots[J]. Machinery Design & Manufacture , 2017(9): 250-253. (in Chinese)
姚德臣, 杨建伟, 程晓卿, 等.基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J].机械工程学报, 2018, 54(9): 168-176.
YAO D CH, YANG J W, CHENG X Q, et al .. Railway rolling bearing fault diagnosis based on muti-scale IMF permutation entropy and SA-SVM classifier[J]. Journal of Mechanical Engineering , 2018, 54(9): 168-176. (in Chinese)
项巍巍, 蔡改改, 樊薇, 等.基于双调Q小波变换的瞬态成分提取及轴承故障诊断应用研究[J].振动与冲击, 2015, 34(10): 34-39.
XIANG W W, CAI G G, FAN W, et al .. Transient feature extraction based on double-TQWT and its application in bearing fault diagnosis[J]. Journal of Vibration and Shock , 2015, 34(10): 34-39. (in Chinese)
李华, 刘韬, 伍星, 等.基于SVD和熵优化频带熵的滚动轴承故障诊断研究[J].振动工程学报, 2018, 31(2): 358-364.
LI H, LIU T, WU X, et al .. Research on fault diagnosis of rolling bearing based on SVD and optimized frequency band entropy by entropy[J]. Journal of Vibration Engineering , 2018, 31(2): 358-364. (in Chinese)
祝小彦, 王永杰.基于MOMEDA与Teager能量算子的滚动轴承故障诊断[J].振动与冲击, 2018, 37(6): 104-110, 123.
ZHU X Y, WANG Y J. Fault diagnosis of rolling bearings based on the MOMEDA and Teager energy operator[J]. Journal of Vibration and Shock , 2018, 37(6): 104-110, 123. (in Chinese)
陈向民, 张亢, 晋风华, 等.基于时变零相位滤波的变转速滚动轴承故障诊断[J].中国机械工程, 2018, 29(2): 177-185.
CHEN X M, ZHANG K, JIN F H, et al .. Fault diagnosis method for rolling bearings under variable rotate speed based on time-varying zero-phase filter[J]. China Mechanical Engineering , 2018, 29(2): 177-185. (in Chinese)
陈保家, 汪新波, 严文超, 等.采用品质因子优化和子带重构的共振稀疏分解滚动轴承故障诊断方法[J].西安交通大学学报, 2018, 52(4): 70-76, 89.
CHEN B J, WANG X B, YAN W CH, et al .. A RSSD fault diagnosis method for rolling bearings based on optimization of quality factors and reconstruction of sub-bands[J]. Journal of Xi'an Jiaotong University , 2018, 52(4): 70-76, 89. (in Chinese)
余建波, 吕靖香, 程辉, 等.基于ITD和改进形态滤波的滚动轴承故障诊断[J].北京航空航天大学学报, 2018, 44(2): 241-249.
YU J B, LÜ J X, CHENG H, et al .. Fault diagnosis for rolling bearing based on ITD and improved morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics , 2018, 44(2): 241-249. (in Chinese)
刘东东, 程卫东, 温伟刚, 等.基于包络解调滤波的滚动轴承复合故障诊断[J].中南大学学报:自然科学版, 2018, 49(4): 881-887.
LIU D D, CHENG W D, WEN W G, et al .. Rolling bearing multi-fault diagnosis based on envelope demodulation filter algorithm[J]. Journal of Central South University:Science and Technology , 2018, 49(4): 881-887. (in Chinese)
刘东东, 程卫东, 万广通.基于故障特征趋势线模板的滚动轴承故障诊断[J].机械工程学报, 2017, 53(9): 83-91.
LIU D D, CHENG W D, WAN G T. Bearing fault diagnosis based on fault characteristic trend template[J]. Chinese Journal of Mechanical Engineering , 2017, 53(9): 83-91. (in Chinese)
郑小霞, 周国旺, 任浩翰, 等.基于变分模态分解和排列熵的滚动轴承故障诊断[J].振动与冲击, 2017, 36(22): 22-28.
ZHENG X X, ZHOU G W, REN H H, et al .. A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J]. Journal of Vibration and Shock , 2017, 36(22): 22-28. (in Chinese)
马萍, 张宏立, 范文慧.基于局部与全局结构保持算法的滚动轴承故障诊断[J].机械工程学报, 2017, 53(2): 20-25.
MA P, ZHANG H L, FAN W H. Fault diagnosis of rolling bearings based on local and global preserving embedding algorithm[J]. Chinese Journal of Mechanical Engineering , 2017, 53(2): 20-25. (in Chinese)
鄢小安, 贾民平.基于改进奇异谱分解的形态学解调方法及其在滚动轴承故障诊断中的应用[J].机械工程学报, 2017, 53(7): 104-112.
YAN X A, JIA M P. Morphological demodulation method based on improved singular spectrum decomposition and its application in rolling bearing fault diagnosis[J]. Journal of Mechanical Engineering , 2017, 53(7): 104-112. (in Chinese)
赵德尊, 李建勇, 程卫东, 等.变转速下基于广义解调算法的滚动轴承故障诊断[J].振动工程学报, 2017, 30(5): 865-873.
ZHAO D Z, LI J Y, CHENG W D, et al .. Rolling element bearing fault diagnosis based on generalized demodulation algorithm under variable rotational speed[J]. Journal of Vibration Engineering , 2017, 30(5): 865-873. (in Chinese)
李宏坤, 杨蕊, 任远杰, 等.利用粒子滤波与谱峭度的滚动轴承故障诊断[J].机械工程学报, 2017, 53(3): 63-72.
LI H K, YANG R, REN Y J, et al .. Rolling element bearing diagnosis using particle filter and kurtogram[J]. Journal of Mechanical Engineering , 2017, 53(3): 63-72. (in Chinese)
刘文朋, 刘永强, 杨绍普, 等.基于典型谱相关峭度图的滚动轴承故障诊断方法[J].振动与冲击, 2018, 37(8): 87-92.
LIU W P, LIU Y Q, YANG SH P, et al .. Fault diagnosis of rolling bearing based on typical correlated kurtogram[J]. Journal of Vibration and Shock , 2018, 37(8): 87-92. (in Chinese)
刘晓东, 刘朦月, 陈寅生, 等. EEMD-PE与M-RVM相结合的轴承故障诊断方法[J].哈尔滨工业大学学报, 2017, 49(9): 122-128.
LIU X D, LIU M Y, CHEN Y SH, et al .. Rolling bearing fault diagnosis based on EEMD-PE coupled with M-RVM[J]. Journal of Harbin Institute of Technology , 2017, 49(9): 122-128. (in Chinese)
陶洁, 刘义伦, 杨大炼, 等.基于细菌觅食决策和深度置信网络的滚动轴承故障诊断[J].振动与冲击, 2017, 36(23): 68-74.
TAO J, LIU Y L, YANG D L, et al .. Rolling bearing fault diagnosis based on bacterial foraging algorithm and deep belief network[J]. Journal of Vibration and Shock , 2017, 36(23): 68-74. (in Chinese)
廖传军, 李学军, 刘德顺.小波再分配尺度谱在声发射信号特征提取中的应用[J].机械工程学报, 2009, 45(2): 273-279.
LIAO CH J, LI X J, LIU D S. Application of reassigned wavelet scalogram in feature extraction based on acoustic emission signal[J]. Chinese Journal of Mechanical Engineering , 2009, 45(2): 273-279. (in Chinese)
郝如江, 卢文秀, 褚福磊.形态滤波在滚动轴承故障声发射信号处理中的应用[J].清华大学学报:自然科学版, 2008, 48(5): 812-815.
HAO R J, LU W X, CHU F L. Morphology filters for analyzing roller bearing fault using acoustic emission signal processing[J]. Journal of Tsinghua University: Science and Technology , 2008, 48(5): 812-815. (in Chinese)
胡爱军, 马万里, 唐贵基.基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J].中国电机工程学报, 2012, 32(11): 106-111, 153.
HU A J, MA W L, TANG G J. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J]. Proceedings of the CSEE , 2012, 32(11): 106-111, 153. (in Chinese)
蔡艳平, 李艾华, 石林锁, 等.基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J].振动与冲击, 2011, 30(2): 167-172, 191.
CAI Y P, LI A H, SHI L S, et al .. Roller bearing fault detection using improved envelope spectrum analysis based on EMD and spectrum kurtosis[J]. Journal of Vibration and Shock , 2011, 30(2): 167-172, 191. (in Chinese)
梁泽明, 姜洪权, 周秉直, 等.多参数相似性信息融合的剩余寿命预测[J].计算机集成制造系统, 2018, 24(4): 813-819.
LIANG Z M, JIANG H Q, ZHOU B ZH, et al .. Multi-variable similarity-based information fusion method for remaining useful life prediction[J]. Computer Integrated Manufacturing Systems , 2018, 24(4): 813-819. (in Chinese)
张袅娜, 郭孔辉, 丁海涛.基于多源信息融合的行驶工况识别及其在整车转矩分配中的应用[J].机械工程学报, 2017, 53(24): 135-143.
ZHANG N N, GUO K H, DING H T. Driving cycle recognition algorithm based on multi-source information fusion and application in vehicle torque distribution[J]. Journal of Mechanical Engineering , 2017, 53(24): 135-143. (in Chinese)
张明, 江志农.基于多源信息融合的往复式压缩机故障诊断方法[J].机械工程学报, 2017, 53(23): 46-52.
ZHANG M, JIANG ZH N. Reciprocating compressor fault diagnosis technology based on multi-source information fusion[J]. Chinese Journal of Mechanical Engineering , 2017, 53(23): 46-52. (in Chinese)
俞昆, 谭继文, 李善.基于多传感器信息融合的滚动轴承故障诊断研究[J].仪表技术与传感器, 2016(7): 97-102, 107.
YU K, TAN J W, LI SH. Rolling bearing fault diagnosis research based on multi-sensor information fusion[J]. Instrument Technique and Sensor , 2016(7): 97-102, 107. (in Chinese)
李荣远, 张国银, 王海瑞, 等.基于GA-BP神经网络的多传感器轴承故障诊断[J].化工自动化及仪表, 2017, 44(10): 916-920, 972.
LI R Y, ZHANG G Y, WANG H R, et al .. Research on multi-sensor bearing fault diagnosis based on GA-BP neural network[J]. Control and Instruments in Chemical Industry , 2017, 44(10): 916-920, 972. (in Chinese)
GB/T 24607-2009, 滚动轴承寿命与可靠性试验评定[S].洛阳: 洛阳轴承研究所, 2010.
GB/T 24607-2009, Rolling Bearings-Test and Assessment for Life and Reliability [S]. Luoyang: Luoyang Bearing Science And Technology Co., Ltd, 2010. (in Chinese)
孙占龙.基于共振稀疏分解的滚动轴承故障诊断方法研究[D].北京: 北京交通大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10004-1017060313.htm
SUN ZH L. Study on fault diagnosis of rolling element bearings based on resonance-based sparse decomposition [D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
徐彦伟, 陈立海, 袁子皓, 等.基于信息融合的刀具磨损状态智能识别[J].振动与冲击, 2017, 36(21): 257-264.
XU Y W, CHEN L H, YUAN Z H, et al .. Intelligent recognition of tool wear conditions based on the information fusion[J]. Journal of Vibration and Shock , 2017, 36(21): 257-264. (in Chinese)
钱士才, 孙宇昕, 熊振华.基于支持向量机的颤振在线智能检测[J].机械工程学报, 2015, 51(20):1-8.
QIAN SH C, SUN Y X, XIONG ZH H. Support vector machine based online intelligent chatter detection [J]. Journal of Mechanical Engineering , 2015, 51(20): 1-8. (in Chinese)
陈东宁, 张运东, 姚成玉, 等.基于FVMD多尺度排列熵和GK模糊聚类的故障诊断[J].机械工程学报, 2018, 54(14): 16-27.
CHEN D N, ZHANG Y D, YAO CH Y, et al .. Fault diagnosis based on FVMD multi-scale permutation entropy and GK fuzzy clustering[J]. Journal of Mechanical Engineering , 2018, 54(14): 16-27. (in Chinese)
吴爱国, 刘海亭, 董娜.机械臂神经网络非奇异快速终端滑模控制[J].农业机械学报, 2018, 49(2): 395-404, 240.
WU A G, LIU H T, DONG N. Nonsingular fast terminal sliding mode control of robotic manipulators based on neural networks[J]. Transactions of the Chinese Society for Agricultural Machinery , 2018, 49(2): 395-404, 240. (in Chinese)
张永志, 董俊慧.基于模糊C均值聚类的模糊RBF神经网络预测焊接接头力学性能建模[J].机械工程学报, 2014, 50(12): 58-64.
ZHANG Y ZH, DONG J H. Modeling fuzzy RBF neural network to predict of mechanical properties of welding joints based on fuzzy C-means cluster[J]. Journal of Mechanical Engineering , 2014, 50(12): 58-64. (in Chinese)
高炜欣, 汤楠, 李琳, 等.基于多层Hopfield神经网络的X射线焊缝气泡检测[J].机械工程学报, 2007, 43(4): 193-197.
GAO W X, TANG N, LI L, et al .. New algorithm for detecting air bubbles in steel pipe welding of X-ray based on hopfield neural network[J]. Chinese Journal of Mechanical Engineering , 2007, 43(4): 193-197. (in Chinese)
蔡润, 武震, 云欢, 等.基于BP和SOM神经网络相结合的地震预测研究[J].四川大学学报(自然科学版), 2018, 55(2): 307-315.
CAI R, WU ZH, YUN H, et al .. Research on earthquake prediction based on BP and SOM neural network[J]. Journal of Sichuan University(Natural Science Edition) , 2018, 55(2): 307-315. (in Chinese)
王小川, 史峰, 郁磊, 等. MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社, 2013.
WANG X CH, SHI F, YU L, et al .. 43 Cases Analysis of MATLAB Neural Network [M]. Beijing: Beihang University Press, 2013. (in Chinese)
0
浏览量
163
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构