浏览全部资源
扫码关注微信
1.天津市环境保护科学研究院,天津 300191
2.天津市大气污染防治重点实验室,天津 300191
3.天津环科瞻云科技发展有限公司,天津 300191
[ "秦龙(1988-),男,北京人,博士,工程师,2015年于南开大学获得博士学位,主要从事大气环境痕量气体的激光雷达探测研究。E-mail:qinlongad@163.com" ]
张丽娜(1982-),女,天津人,工程师,2007年于南京农业大学获得硕士学位,主要从事臭氧污染监测与污染防治技术的研究。E-mail:120966308@qq.comZHANG Li-na, E-mail: 120966308@qq.com
收稿日期:2018-12-28,
录用日期:2019-3-15,
纸质出版日期:2019-08-15
移动端阅览
秦龙, 高玉平, 王文秀, 等. 差分吸收激光雷达用于探测天津市夏秋季臭氧垂直分布特征[J]. 光学 精密工程, 2019,27(8):1697-1703.
Long QIN, Yu-ping GAO, Wen-xiu WANG, et al. Observation of vertical distribution of ozone based on differential absorption lidar during summer and autumn in Tianjin[J]. Optics and precision engineering, 2019, 27(8): 1697-1703.
秦龙, 高玉平, 王文秀, 等. 差分吸收激光雷达用于探测天津市夏秋季臭氧垂直分布特征[J]. 光学 精密工程, 2019,27(8):1697-1703. DOI: 10.3788/OPE.20192708.1697.
Long QIN, Yu-ping GAO, Wen-xiu WANG, et al. Observation of vertical distribution of ozone based on differential absorption lidar during summer and autumn in Tianjin[J]. Optics and precision engineering, 2019, 27(8): 1697-1703. DOI: 10.3788/OPE.20192708.1697.
结合差分吸收臭氧激光雷达与近地面臭氧监测,对天津市2018年6月23日至9月28日期间的臭氧污染垂直分布特征进行了长期观测。结果显示,近地面与300 m高度处的臭氧浓度的变化趋势具有较高的一致性,而随着高度的增加,臭氧浓度呈现先升高后降低的趋势,并在约1 000 m高度处达到最大值。受臭氧前体物由近地面向高空逐渐输送、以及NO向上传输过程中逐渐消耗的影响,臭氧污染日变化曲线出现最大、最小值的时间随高度的升高逐渐推迟;在1 500 m以上的高空,臭氧日变化曲线出现双峰分布。在臭氧污染时段,在高空也观测到高浓度的臭氧污染带,在1 000 m处的臭氧浓度最大值约为570 μg/m
3
,污染带厚度可超过1 km,持续时间长达数日,且在夜间不能完全消散。观测时段内总计在23个污染日出现高空与近地面臭氧污染的混合,加重了近地面的臭氧污染程度。
Differential absorption lidar combined with near-surface ozone monitoring were used to detect the vertical distribution of ozone in Tianjin from Jun. 23 to Sep. 28
2018. The monitoring results indicated that the ozone concentration at 300 m above ground showed the same variation tendency as the monitoring values obtained near the ground. In the boundary layer of about 300 m to 1 000 m
the ozone concentration increased with height
but it then decreased at higher altitude. The maximum concentration occurred at approximately 1 000 m above ground. The times when the maximum and minimum concentrations occurred in the diurnal variation curve of ozone were delayed with increasing altitude. This phenomenon was influenced by the gradual transmission process of ozone precursors from the near-surface level to the upper air and the wastage of nitrogen oxide attributable to its oxidation reaction during the transmission process. Above 1 500 m
the diurnal variation curve of ozone showed a double-peak distribution. During the episodes of ozone pollution
the pollution zone with high ozone concentration could be detected frequently in the upper air. The ozone concentration at 1 000 m could reach about 570 μg/m
3
and the thickness of the pollution zone could be greater than 1 km. The ozone at high altitude could last for days and sometimes did not dissipate completely at night. In this research
a mixing phenomenon of ozone pollution between high altitude and the near-surface level
which increased the degree of ozone contamination at the near-surface level
was identified 23 times during the ozone pollution days.
WANG T, WEI X L, DING A J, et al .. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994—2007[J]. Atmos. Chem. Phys. , 2009, 9: 6217-6227.
徐慧, 张晗, 邢振雨, 等.厦门冬春季大气VOCs的污染特征及臭氧生成潜势[J].环境科学, 2015, 36(10): 11-17.
XU H, ZHANG H, XING ZH Y, et al. . Pollution characteristics and ozone formation potential of ambient VOCs in winter and spring in Xiamen[J]. Environmental Science , 2015, 36(10): 11-17. (in Chinese)
BRAUER M, FREEDMAN G, FROSTAD J, et al. . Ambient air pollution exposure estimation for the global burden of disease 2013[J]. Environ. Sci. Technol. , 2016, 50: 79-88.
THOMPSON A M, YORKS J E, MILLER S K, et al. . Tropospheric ozone sources and wave activity over Mexico City and Houston during MILAGRO/Intercontinental Transport Experiment (INTEX-B) Ozonesonde Network Study, 2006 (IONS-06)[J]. Atmos. Chem. Phys. , 2008, 8: 5113-5125.
范广强, 张天舒, 付毅宾, 等.差分吸收激光雷达监测北京灰霾天臭氧时空分布特征[J].中国激光, 2014, 41(10): 1014003-1-1014003-8.
FAN G Q, ZHANG T SH, FU Y B, et al .. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing[J]. Chinese Journal of Lasers , 2014, 41(10): 1014003-1-1014003-8. (in Chinese)
刘秋武, 陈亚峰, 王杰, 等.差分吸收NO 2 激光雷达波长漂移和能量波动对浓度反演的影响[J].光学 精密工程, 2018, 26 (2): 253-260.
LIU Q W, CHEN Y F, WANG J, et al .. Effects of wavelength shift and energy fluctuation on inversion of NO 2 differential absorption lidar[J]. Opt. Precision Eng., 2018, 26(2): 253-260. (in Chinese)
曹开法, 黄见, 胡顺星, 等.边界层臭氧差分吸收激光雷达[J].红外与激光工程, 2015, 44(10): 2912-2917.
CAO K F, HUANG J, HU SH X, et al. . Boundary layer ozone differential-absorption lidar[J]. Infrared and Laser Engineering , 2015, 44(10): 2912-2917. (in Chinese)
KUANG S, BURRIS J F, NEWCHURCH M J, et al. . Differential absorption lidar to measure subhourly variation of tropospheric ozone profiles[J]. IEEE Trans. Geosci. Electron. , 2011, 49(1): 557-571.
CHI X Y, LIU CH, XIE ZH Q, et al .. Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China[J]. Atmos. Res. , 2018, 213: 224-235.
项衍, 刘建国, 张天舒, 等.基于差分吸收激光雷达和数值模式探测杭州夏季臭氧分布[J].光学 精密工程, 2018, 26(8): 1882-1887.
XIANG Y, LIU J G, ZHANG T SH, et al .. Differential absorption lidar combined with numerical model used for detecting distribution of ozone during summer in Hangzhou[J]. Opt. Precision Eng., 2018, 26(8): 1882-1887. (in Chinese)
XING C Z, LIU C, WANG S S, et al .. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China[J]. Atmos. Chem. Phys. , 2017, 17: 14275-14289.
XU J, MA J Z, ZHENG S, et al. . Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas[J]. Atmos. Chem. Phys. , 2011, 11: 12241-12252.
0
浏览量
137
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构