浏览全部资源
扫码关注微信
1.中国科学院 力学研究所 国家微重力实验室,北京 100190
2.中国科学院 光电研究院 浮空器系统研究发展中心,北京 100094
3.中国科学院大学 光电学院,北京 100049
4.中国科学院大学 工程科学学院,北京 100049
[ "李玉琼(1982-),男,湖南娄底人,博士,副研究员、中国科学院青年创新促进委员会会员,2005年于陕西科技大学获得学士学位,2010年于北京理工大学获得博士学位,主要从事面向空间引力波探测的激光干涉测量研究。E-mail:liyuqiong@imech.ac.cn" ]
收稿日期:2018-12-24,
录用日期:2019-1-25,
纸质出版日期:2019-08-15
移动端阅览
李玉琼, 王璐钰, 王晨昱. 面向空间引力波探测的弱光探测器性能检测与分析[J]. 光学 精密工程, 2019,27(8):1710-1718.
Yu-qiong LI, Lu-yu WANG, Chen-yu WANG. Preliminary test of performance detection and analysis of weak-light detector for space gravitational wave detection[J]. Optics and precision engineering, 2019, 27(8): 1710-1718.
李玉琼, 王璐钰, 王晨昱. 面向空间引力波探测的弱光探测器性能检测与分析[J]. 光学 精密工程, 2019,27(8):1710-1718. DOI: 10.3788/OPE.20192708.1710.
Yu-qiong LI, Lu-yu WANG, Chen-yu WANG. Preliminary test of performance detection and analysis of weak-light detector for space gravitational wave detection[J]. Optics and precision engineering, 2019, 27(8): 1710-1718. DOI: 10.3788/OPE.20192708.1710.
为了研制出满足未来空间引力波探测需求的弱光探测器,初步进行了弱光探测器性能检测,分析了探测器的响应度、响应带宽、本底噪声等性能指标,以筛选出能满足未来空间引力波探测要求的探测器研制途径和解决方案。首先,根据空间引力波探测太极计划的激光器功率、轨道、星间距等设计方案,推算出太极计划所需探测器的性能指标;然后,与中国电子科技集团公司第四十四研究所、西南技术物理研究所和中国科学院上海技术物理研究所等单位合作研制了3款弱光探测器;最后,利用本课题组研制的低噪外差激光干涉系统对其响应度、响应带宽及本底噪声等指标进行检测,并分析了影响探测器性能指标的因素。实验结果表明:其中两款探测器的响应度优于1.8×10
5
V/W,响应带宽大于10 MHz;3款探测器的本底噪声均低于10 pm/
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1719247&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1719247&type=small
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1719247&type=middle
@10 mHz (0.1 mHz~1 Hz),信噪比高于20 dB。这3款探测器在响应度、响应带宽和信噪比等方面具有满足未来太极计划实验星要求的潜力。
To develop a weak-light detector that meets the needs of space gravitational wave detection in the future
the performance detection of weak-light detectors was initially carried out
and the performance parameters
such as responsiveness
response bandwidth and background noise
of the detectors were analyzed
for finding out the method and solution of weak-light detector development that can meet the requirements of future space gravitational wave detection. Firstly
according to the design scheme of the space gravitational wave detection
e.g. Taiji
including laser power
orbit design and star spacing
the parameters of the detector required by Taiji were calculated. Next
three kinds of weak-light detectors were developed by the China Electronics Technology Group Corporation No.44 Research Institute
Southwest Institute of Technical Physics
Shanghai Institute of Technical Physics of the Chinese Academy of Sciences with joint efforts of our research group. Finally
the responsivity
response bandwidth
and background noise of the detectors were tested by the low-noise heterodyne laser interferometry system developed by our research group
and the factors affecting the performance of the detectors were analyzed. The experimental results show that the responsiveness of two detectors is better than 1.8×10
5
V/W and that the response bandwidth is greater than 10 MHz. The ground noise of the three detectors is lower than 10 pm/
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1719247&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1719247&type=small
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1719247&type=middle
@10 mHz (0.1 mHz-1 Hz)
and the signal-to-noise ratio is higher than 20 dB. According to the aforementioned experimental results
the three detectors have the potential to meet the requirements of the Taiji Pathfinder in terms of responsiveness
response bandwidth
and signal-to-noise ratio.
ABRAMOVICI A, ALTHOUSE W E, DREVER R W P, et al .. LIGO: The laser interferometer gravitational-wave observatory[J]. Science , 1992, 256(5055): 325-333.
ARAIN M A, MUELLER G. Design of the advanced LIGO recycling cavities[J]. Optics Express , 2008, 16(14): 10018-10032.
ACERNESE F, ANTONUCCI F, AOUDIA S, et al .. Performances of the Virgo interferometer longitudinal control system[J]. Astroparticle Physics , 2010, 33(2): 75-80.
BEKER M G, BLOM M, BRAND J F J, et al .. Seismic attenuation technology for the advanced Virgo gravitational wave detector[J]. Physics Procedia , 2012, 37: 1389-1397.
HEWITSON M, AUFMUTH P, AULBERT C, et al .. A report on the status of the GEO 600 gravitational wave detector[J]. Classical & Quantum Gravity , 2003, 20(17): S581-S591.
GROTE H. The status of GEO 600[J]. Classical and Quantum Gravity , 2008, 25(11): 114043-114051.
ANDO M, COLLABORATION T T. Current status of the TAMA300 gravitational-wave detector[J]. Classical and Quantum Gravity , 2005, 22(18): S881-S889.
KAWAMURA S, COLLABORATION T T. Laser Interferometer gravitational wave detector[J]. Progress of Theoretical Physics Supplement , 1999, 136: 72-86.
PATEL J, WOOLLEY A, ZHAO C, et al .. Vacuum control system for the AIGO gravitational wave detector[J]. Vacuum , 2010, 85(2): 176-179.
BARRIGA P, BLAIR D G, COWARD D, et al .. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors[J]. Classical and Quantum Gravity , 2010, 27(8): 084005-1-12.
ABBOTT B P, ABBOTT R, ABBOTT T D, et al .. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters , 2016, 116: 061102-1-061102-16.
DANZMANN K, STUDY TEAM T L. LISA: Laser interferometer space antenna for gravitational wave measurements[J]. Classical and Quantum Gravity, 1996, 13(11A): A247-A250.
CORNISH N J. Detecting a stochastic gravitational wave background with the laser interferometer space antenna[J]. Physical Review D , 2001, 65(2): 022004.
AMARO-SEOANE P, AOUDIA S, BABAK S, et al .. Low-frequency gravitational-wave science with eLISA/NGO[J]. Classical and Quantum Gravity , 2012, 29(12): 124016.
PIJNENBURG J, RIJNVELD N, HOGENHUIS H. Extremely stable piezo mechanisms for the new gravitational wave observatory[J]. SPIE , 2013, 8450: 84500C-1-84500C-15.
CORBIN V, CORNISH N J. Detecting the cosmic gravitational wave background with the big bang observer[J]. Classical and Quantum Gravity , 2006, 23(7): 2435-2446.
CUTLER C, HARMS J. Big bang observer and the neutron-star-binary subtraction problem[J]. Physical Review D , 2006, 73(4): 042001-1-21.
KAWAMURA S, NAKAMURA T, ANDO M, et al .. The Japanese space gravitational wave antenna—DECIGO[J]. Classical Quantum Gravity , 2006, 23(3): S125-S131.
ANDO M, KAWAMURA S, SETO N, et al .. DECIGO and DECIGO pathfinder[J]. Classical & Quantum Gravity , 2010, 27(8): 084010.
GONG X F, XU S N, BAI S, et al .. A scientific case study of an advanced LISA mission[J]. Classical Quantum Gravity , 2011, 28(9): 094012.
CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J]. Nature , 2016, 531(7593):150-151.
HU W R, WU Y L. The Taiji Program in space for gravitational wave physics and the nature of gravity[J]. National Science Review , 2017, 4(5): 685-686.
LUO J, CHEN S, DUAN H Z, et al .. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity , 2016, 33(3): 035010.
NI W T. Gravitational wave detection in space[J]. International Journal of Modern Physics D , 2016, 25(14): 163001.
LI Y Q, LUO Z R, LIU H S, et al .. Laser interferometer for space gravitational waves detection and earth gravity mapping[J]. Microgravity-Science and Technology , 2018, 30(6): 817-829.
姚东, 李钰鹏, 赵亚, 等.适用于光黏工艺的干涉仪公差保证方法[J].光学 精密工程, 2018, 26(8): 1945-1953.
YAO D, LI Y P, ZHAO Y, et al .. Tolerance assurance of interferometer for optical HCB process[J]. Opt. Precision Eng., 2018, 26(8): 1945-1953.(in Chinese)
DONG Y H, LIU H S, LUO Z R, et al .. A comprehensive simulation of weak-light phase-locking for space-borne gravitational wave antenna[J]. Science China Technological Sciences , 2016, 59(5):730-737.
DONG Y H, LIU H S, LUO Z R, et al .. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions[J] . Review of Scientific Instruments , 2014, 85(7):074501.
LI Y Q, LUO Z R, LIU H S, et al .. Path-length measurement performance evaluation of polarizing laser interferometer prototype[J]. Applied Physics B , 2015, 118(2):307-317.
JOSHI A M, DATTA S, PRASAD N, et al .. Reliability testing of ultra-low noise InGaAs quad photoreceivers[J]. SPIE , 2018, 10526: 105261J-1-10.
JOSHI A M, DATTA S. Space qualification of InGaAs photodiodes and photoreceivers[J]. SPIE , 2018, 10641: 106410K-1-8.
JOSHI A, DATTA S, RUE J, et al .. Ultra-low noise, large-area InGaAs quad photoreceiver with low crosstalk for laser interferometry space antenna[J]. SPIE , 2012, 8453: 84532G-1-10.
LIU H S, LUO Z R, JIN G. The development of phasemeter for taiji space gravitational wave detection[J]. Microgravity-Science and Technology , 2018, 30(6):775-781.
0
浏览量
23
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构