浏览全部资源
扫码关注微信
华南理工大学 广东省精密装备与制造技术重点实验室,广东 广州 510640
[ "林盛隆(1993-),男,福建泉州人,博士研究生,2016年于中南大学获得学士学位,主要从事柔顺机构方面的研究。E-mail:294703373@qq.com" ]
朱本亮(1986-),男,安徽宿州人,副教授,2014年于华南理工大学获得博士学位,主要从事柔顺机构拓扑优化理论与方法,微纳操作机构及相关设计方法的研究。E-mail: meblzhu@scut.edu.cn ZHU Ben-liang, E-mail:meblzhu@scut.edu.cn
收稿日期:2019-01-02,
录用日期:2019-3-1,
纸质出版日期:2019-08-15
移动端阅览
林盛隆, 朱本亮. 高带宽两自由度并联柔顺精密定位平台的优化设计与实验[J]. 光学 精密工程, 2019,27(8):1774-1782.
Sheng-long LIN, Ben-liang ZHU. Optimal design and experiment of a high-bandwidth two-degree-of-freedom parallel nanopositioning stage[J]. Optics and precision engineering, 2019, 27(8): 1774-1782.
林盛隆, 朱本亮. 高带宽两自由度并联柔顺精密定位平台的优化设计与实验[J]. 光学 精密工程, 2019,27(8):1774-1782. DOI: 10.3788/OPE.20192708.1774.
Sheng-long LIN, Ben-liang ZHU. Optimal design and experiment of a high-bandwidth two-degree-of-freedom parallel nanopositioning stage[J]. Optics and precision engineering, 2019, 27(8): 1774-1782. DOI: 10.3788/OPE.20192708.1774.
针对目前用于原子力显微镜的扫描定位平台带宽低、行程小、耦合性能差等问题,提出了一种基于柔性梁的高带宽两自由度精密定位平台并对该平台进行了优化设计、仿真验证与实验分析。首先,提出了以双端固定梁与平行杂交梁为基础的并联柔顺平台,分别运用卡式第二定理和拉格朗日方程建立了平台刚度和固有频率的数学模型;然后,通过最优化理论获取了平台的最高固有频率及最优设计尺寸,并运用有限元方法验证了优化结果的可靠性;最后,搭建了实验系统,对平台进行了实验研究。实验结果表明:所设计平台的最大行程为12.950 μm×13.517 μm,耦合误差小于1.77%,
X
,
Y
方向的固有频率分别为12.21和13.50 kHz,在开环条件下可良好地追踪频率小于1 kHz的三角波,有效改善了传统扫描定位平台响应慢、行程小、耦合性能差等问题。
A high-bandwidth
two-degree-of-freedom nanopositioning stage based on the optimization of a flexible beam is proposed with the aim of improving the low-bandwidth performance
relative low-travel range
and poor coupling performance of the scanning positioning stage of Atomic Force Microscopy. Design optimization
simulation verification
and experimental analysis of the proposed stage are conducted as part of this process. Firstly
a parallel compliant moving stage composed of a doubly clamped beam and parallel hybrid beam is presented
while Castigliano's second theorem and Lagrange's equation are applied to establish the mathematical model of its stiffness and natural frequency. Then
the maximum natural frequency and optimal size of the stage are obtained using optimization theory
while the optimization result reliability is verified using finite element method software. Finally
an experimental system is built and experiments are conducted on the developed stage. The experimental results indicate that the travel range of the proposed stage is 12.950 μm×13.517 μm
with a coupling error of less than 1.77%. The natural frequencies in the
X
and
Y
directions are 12.21 kHz and 13.50 kHz
respectively. In open loop
triangular waves with frequencies less than 1 kHz can be tracked well
effectively addressing the problems of slow response
small stroke
and poor coupling performance of the traditional scanning nanopositioning stage.
胡俊峰, 陈星星.具有零刚度特性的微动平台优化设计[J].光学 精密工程, 2018, 26(6): 1430-1440.
HU J F, ZHANG X X. Optimized design of a micro-motion stage with zero stiffness[J]. Opt. Precision Eng. , 2018, 26(6): 1430-1440. (in Chinese)
WANG R Z, ZHANG X M. Parameters optimization and experiment of a planar parallel 3-DOF nanopositioning system[J]. IEEE Transactions on Industrial Electronics , 2018, 65(3): 2388-2397.
YONG Y K, APHALE S S, REZA MOHEIMANI S O. Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning[J]. IEEE Transactions on Nanotechnology , 2009, 8(1): 46-54.
ANDO T, KODERA N, TAKAI E, et al.. A high-speed atomic force microscope for studying biological macromolecules[J]. Proceedings of the National Academy of Sciences , 2001, 98(22):12468-12472.
CHEN K S, TRUMPER D L, SMITH S T. Design and control for an electromagnetically driven X-Y-θ stage[J]. Precision Engineering , 2002, 26(4): 355-369.
ELMUSTAFA A, LAGALLY M G. Flexural-hinge guided motion nanopositioner stage for precision machining: finite element simulations[J]. Precision engineering , 2001, 25(1): 77-81.
TIAN Y, SHIRINZADEH B, ZHANG D. Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation[J]. Microelectronic Engineering , 2010, 87(2): 230-241.
刘敏, 张宪民.基于类Ⅴ型柔性铰链的微位移放大机构[J].光学 精密工程, 2017, 25(4):999-1008.
LIU M, ZHANG X M. Micro-displacement amplifier based on quasi-Ⅴ-shaped flexure hinge[J]. Opt. Precision Eng. , 2017, 25(4): 999-1008. (in Chinese)
钟相强, 黄卫清, 张轩, 等.二级杠杆柔性铰链复合结构的双足压电直线电机[J].光学 精密工程, 2018, 26(1):86-94.
ZHONG X, HUANG W Q, ZHANG X, et al.. Double-foot piezoelectric linear motor with secondary lever and flexure hinge composite structure[J]. Opt. Precision Eng. , 2018, 26(1): 86-94. (in Chinese)
KENTON B J, LEANG K K. Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner[J]. IEEE/ASME Transactions on Mechatronics , 2012, 17(2): 356-369.
WADIKHAYE S P, YONG Y K, REZA MOHEIMANI S O. A serial-kinematic nanopositioner for high-speed atomic force microscopy[J]. Review of Scientific Instruments , 2014, 85(10): 105104.
MAHMOOD I A, MOHEIMANI S O R, BHIKKAJI B. A new scanning method for fast atomic force microscopy[J]. IEEE Transactions on Nanotechnology , 2011, 10(2): 203-216.
YONG Y K, MOHEIMANI S R, PETERSEN I R.High-speed cycloid-scan atomic force microscopy[J]. Nanotechnology , 2010, 21(36): 365503.
TUMA T, LYGEROS J, KARTIK V, et al.. High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories[J]. Nanotechnology , 2012, 23(18): 185501.
YONG Y K, BHIKKAJI B, REZA MOHEIMANI S O R. Design, modeling, and FPAA-based control of a high-speed atomic force microscope nanopositioner[J]. IEEE/ASME Transactions on Mechatronics , 2013, 18(3):1060-1071.
CAI K H, HE X B, TIAN Y L, et al.. Design of a XYZ scanner for home-made high-speed atomic force microscopy[J]. Microsystem Technologies , 2018, 24(7): 3123-3132.
CLAYTON G M, TIEN S, LEANG K K, et al.. A review of feed forward control approaches in nanopositioning for high-speed SPM[J]. Journal of Dynamic Systems, Measurement, and Control , 2009, 131(6): 061101.
LIN R Z, ZHANG X M, LONG X J, et al.. Hybrid flexure hinges[J]. Review of Scientific Instruments , 2013, 84(8):085004.
刘延柱, 陈立群, 陈文良.振动力学[M].北京:高等教育出版社, 2011.
LIU Y ZH, CHEN L Q, CHEN W L. Mechanics of Vibration [M]. Beijing: Higher Education Press, 2011. (in Chinese)
吴鹰飞, 周兆英.柔性铰链转动刚度计算公式的推导[J].仪器仪表学报, 2004, 25(1):125-128, 137.
WU Y F, ZHOU ZH Y. Deduction of Design Equation of Flexure Hinge[J]. Chinese Journal of Scientific Instrument , 2004, 25(1):125-128, 137.(in Chinese)
0
浏览量
140
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构