浏览全部资源
扫码关注微信
华侨大学 机电及自动化学院,福建 厦门 361021
[ "范伟(1980-),男,甘肃玉门人,博士,讲师,硕士生导师,2002年、2009年于合肥工业大学分别获得学士、博士学位,主要从事微纳驱动控制技术、压电陶瓷特性领域的研究。E-mail:fanwei@hqu.edu.cn" ]
[ "傅雨晨(1996-),男,浙江湖州人,硕士研究生,2019年于华侨大学获得学士学位,主要从事压电陶瓷迟滞非线性和控制方面的研究。E-mail:1637749097@qq.com" ]
收稿日期:2018-12-28,
录用日期:2019-2-20,
纸质出版日期:2019-08-15
移动端阅览
范伟, 傅雨晨, 于欣妍. 压电陶瓷驱动器的迟滞非线性规律[J]. 光学 精密工程, 2019,27(8):1793-1799.
Wei FAN, Yu-chen FU, Xin-yan YU. Hysteresis nonlinear law of piezoelectric ceramic actuator[J]. Optics and precision engineering, 2019, 27(8): 1793-1799.
范伟, 傅雨晨, 于欣妍. 压电陶瓷驱动器的迟滞非线性规律[J]. 光学 精密工程, 2019,27(8):1793-1799. DOI: 10.3788/OPE.20192708.1793.
Wei FAN, Yu-chen FU, Xin-yan YU. Hysteresis nonlinear law of piezoelectric ceramic actuator[J]. Optics and precision engineering, 2019, 27(8): 1793-1799. DOI: 10.3788/OPE.20192708.1793.
探究压电陶瓷的迟滞非线性规律,为进一步修正迟滞非线性提供参考依据和理论基础。通过实验测量得到迟滞模型并对实验数据分析,拟合出上升轨迹的修正直线,求出其在相同位移下与上升、下降轨迹的电压差作为补偿电压,发现两条轨迹采样点上的输入电压与补偿电压满足近似多项式关系;分别选定5,10和15 V不同步长进行驱动实验。实验结果:上升轨迹(下降轨迹)多项式参数R-square=0.999 2(0.999 9),RMSE=0.083(0.080 86);R-square=0.999 7(0.999 9),RMSE=0.057 39(0.094 99);R-square=0.995 2(0.999 8),RMSE=0.291 6(0.165 5)。实验结论:两条轨迹的R-square近似为1,RMSE较接近0,重复性误差在1.13%~2.63%,输入电压与补偿电压满足近似多项式关系,拟合程度和匹配性较高,且重复性较好,具有可预测性,从而为进一步修正压电陶瓷驱动器的迟滞非线性提供了参考依据和理论基础。
In this study
the hysteresis nonlinear law of piezoelectric ceramics was explored to provide a reference and theoretical basis for further correction of hysteresis nonlinearity. A hysteresis model was obtained through experimental measurements
and experimental data were analyzed. The corrected straight line of the rising trajectory was fitted; the voltage difference between the rising and falling trajectories at the same displacement was obtained as the compensation voltage; and the input voltage at the sampling points of the two trajectories was determined. The compensation voltage was found to satisfy an approximately polynomial relationship
where 5-
10-
and 15-V asynchronous lengths were selected for driving experiments. Experimental results show that the rising trajectory (falling trajectory) polynomial parameters are R-square=0.999 2 (0.999 9)
root mean square error (RMSE)=0.083 (0.080 86); R-square=0.999 7 (0.999 9)
RMSE=0.057 39 (0.094 99); and R-square=0.995 2 (0.999 8)
RMSE=0.291 6 (0.165 5). The experimental results also show that the R-square of the two trajectories is approximately 1; the RMSE is closer to 0; and the repeatability error is between 1.13% and 2.63%. The input and compensation voltages satisfied the approximately polynomial relationship
and the degree of fit and matching are high and repeated. The hysteresis model is proven to have good performance and predictability
thus providing a reference and theoretical basis to further correct the hysteresis nonlinearity of piezoelectric ceramic actuators.
范占斌, 戴一帆, 铁贵鹏, 等.横向压电驱动变形镜的迟滞特性及其闭环校正[J].红外与激光工程, 2018, 47(10):261-266.
FAN ZH B, DAI Y F, TIE G P, et al ..Hysteresis characteristics of transverse piezoelectric driven deformable mirror and its closed-loop correction[J]. Infrared and Laser Engineering , 2018, 47(10):261-266.(in Chinese)
李庭树.压电超精密定位台迟滞非线性建模与控制研究[D].云南: 昆明理工大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10674-1018867338.htm
LI T SH. Research on Hysteresis Nonlinear Modeling and Control of Piezoelectric Ultra-precision Positioning Table [D]. Yunnan: Kunming University of Science and Technology, 2018.(in Chinese)
RANGASAMY M. Nano technology:review[J]. Journal of Applied Pharmaceutical Science , 2011, 1(2)8-16.
李伟, 高思田, 卢明臻, 等.计量型原子力显微镜对的位移测量系统[J].光学 精密工程, 2012, 20(4):796-802.
LI W, GAO S T, LU M CH, et al ..Displacement measuring system for measuring atomicforce microscope[J]. Opt. Precision Eng. , 2012, 20(4):796-802.(in Chinese)
KOMMERPALLI H K R.Design, modeling and optimization of pennsylvania[J]. The Pennsylvania State University , 2010.
姜慧斌.高精度定位系统迟滞非线性建模与控制方法研究[D].浙江: 浙江理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10338-1017083459.htm
JIANG H B. Research on Hysteresis Nonlinear Modeling and Control Method for High Precision Positioning System [D]. Zhejiang: Zhejiang Institute of Technology, 2017.(in Chinese)
李东明, 罗姜, 李丽, 等.压电陶瓷驱动微进给刀架的迟滞建模[J].压电与声光, 2018, 40(5):776-779.
LI D M, LI J, LI L, et al ..Hysteresis modeling of piezoelectric ceramic driven micro-feed tool holder[J]. Piezoelectric and Acoustic , 2018, 40(5): 776-779.(in Chinese)
QIN Y, TIAN Y, ZHANG D, et al ..A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feed forward applications[J]. IEEE/ASME Transactions on Mechatronics , 2013, 18(3):981-989.
RAKOTONDRABE M.Bocu-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[J]. IEEE Transactions on automation Science and Engineering , 2011, 8(2):428-431.
范伟, 林瑜阳, 李钟慎.压电陶瓷驱动器的迟滞特性[J].光学 精密工程, 2016, 24(5):1112-1117.
FAN W, LIN Y Y, LI ZH SH.Hysteresis characteristics of piezoelectric ceramic actuators[J]. Opt. Precision Eng. , 2016, 24(5):1112-1117.(in Chinese)
KLAUS K, PAVEL K. Compensation of complex hysteresis greep effects in piezoelectrically actuated systems—a new preisach modeling approach[J]. IEEE Transaction on Automatic Control , 2009, 54(3):537-550.
TAN U X, WIN T L, ANG W T. Modeling piezoelectric actuator hysteresis with singularity free prandtl-ishlinskii model[J]. Proceeding of the 2006 IEEE International Conference on Robotics and BIomimetics, December 17-20, 2006:251-256.
许素安, 金玮, 梁宇恩, 等.压电陶瓷迟滞神经网络建模与线性补偿控制[J].传感技术学报, 2017, 30(12):1884-1889.
XU S A, JIN W, LIANG Y E, et al .. Modeling and linear compensation control of piezoelectric ceramic hysteretic neural networks[J]. Journal of Transduction Technology , 2017, 30(12):1884-1889.(in Chinese)
王贞艳, 贾高欣.压电陶瓷作动器非对称迟滞建模与内模控制[J].光学 精密工程, 2018, 26(10):2485-2492.
WANG ZH Y, JIA G X.Asymmetric hysteresis modeling and internal model control of piezoelectric ceramic actuators[J]. Opt. Precision Eng. , 2018, 26(10):2485-2492.(in Chinese)
LIU D, FU JIA F.Adaptive internal model control design for positioning control of a piezoceramic actuator with rate-dependent hysteresis[J]. Mechanical Engineering Journal , 2015, 2(6):15-00190.
宋召青, 龙玉峰, 王康.基于支持向量机的迟滞系统建模及性能研究[J].计算机仿真, 2015, 32(3):398-402.
SONG ZH Q, LONG Y F, WANG K. Modeling and performance study of hysteresis system based on support vector machine[J]. Computer Simulation , 2015, 32(3):398-402.(in Chinese)
杨晓京, 胡俊文, 李庭树.压电微定位台的率相关动态迟滞建模及参数辨识[J].光学 精密工程, 2019, 27(3):610-618.
YANG X J, HU J W, LI T SH. Rate-dependent dynamic hysteresis modeling and parameter identification of piezoelectric micropositioning platform[J]. Opt. Precision Eng. , 2019, 27(3):610-618..(in Chinese)
刘红军, 刘洁, 叶芳.用于超磁致伸缩作动器的一种改进的控制方法[J].哈尔滨工业大学学报, 2012, 44(9):91-95.
LIU H J, LIU J, YE F.An improved control method for giant magnetostrictive actuator[J]. Journal of Harbin Institute of Technology , 2012, 44(9):91-95.(in Chinese)
YANG L, LI J.Robust output feedback control with disturbance estimation for piezoelectric actuator[J]. Neurocomputing , 2016, 173:2129-2135.
ESCARENO J A, RAKOTONDRABE M, HABINEZA D. Backstepping-based robust-adaptive control of a nonlinear 2-DOF piezo actuator[J]. Control Engineering Practice , 2015, 41:57-71.
孟爱华, 刘成龙, 陈文艺, 等.超磁致伸缩驱动器的小脑神经网络前馈逆补偿-模糊PID控制[J].光学 精密工程, 2015, 23(3):753-759.
MENG A H, LIU CH L, CHEN W Y, et al .. Cerebellar neural network feedforward inverse compensation-fuzzy PID control of giant magnetostrictive actuator[J]. Opt. Precision Eng. , 2015, 23(3):753-759.(in Chinese)
CENG L, LIU W, YANG C, et al ..A neural-network-based controller for piezoelectric-actuated stick-slip devices[J]. IEEE Transactions on Industria Electronics , 2017(99):1-1.
胡亮亮, 米凤文, 金伟其, 等.基于PI逆模型的快速微摆反射镜的开环控制[J].红外与激光工程, 2017, 46 (8):0818001.
HU L L, MI F W, JIN W Q, et al .. Open loopcontrol of fast steering mirror based on PI inverse model[J]. Infrared and Laser Engineering , 2017, 46 (8): 0818001. (in Chinese)
0
浏览量
179
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构