浏览全部资源
扫码关注微信
1.中国科学院 合肥物质科学研究院 安徽光学精密机械研究所,安徽 合肥 230031
2.中国科学院大学,北京 100049
3.国家卫星气象中心,北京 100081
[ "吴荣华(1982-),男,辽宁辽阳人,高级工程师,博士研究生,主要从事可见光近红外谱段遥感成像仪辐射定标方面的研究。E-mail:wurh@cma.gov.cn" ]
张鹏(1970-),男,陕西铜川人,博士,研究员,博士生导师,1998年于中科院大气物理研究所获得博士学位,主要从事卫星大气遥感、遥感仪器定标和大气辐射传输计算研究。E-mail:zhangp@cma.gov.cnZHANG Peng, E-mail: zhangp@cma.gov.cn
收稿日期:2018-12-27,
录用日期:2019-2-22,
纸质出版日期:2019-08-15
移动端阅览
吴荣华, 张鹏, 郑小兵, 等. 星载成像仪观月数据提取和辐照度转换方法研究[J]. 光学 精密工程, 2019,27(8):1819-1827.
Rong-hua WU, Peng ZHANG, Xiao-bing ZHENG, et al. Data collection and irradiance conversion of lunar obsevation for MERSI[J]. Optics and precision engineering, 2019, 27(8): 1819-1827.
吴荣华, 张鹏, 郑小兵, 等. 星载成像仪观月数据提取和辐照度转换方法研究[J]. 光学 精密工程, 2019,27(8):1819-1827. DOI: 10.3788/OPE.20192708.1819.
Rong-hua WU, Peng ZHANG, Xiao-bing ZHENG, et al. Data collection and irradiance conversion of lunar obsevation for MERSI[J]. Optics and precision engineering, 2019, 27(8): 1819-1827. DOI: 10.3788/OPE.20192708.1819.
为了实现星载成像仪的月球绝对辐射定标,在轨对月观测数据的预处理环节需要完成两方面的任务:一是从全部的冷空视场数据中,准确判识出月亮进入冷空视场的时刻;二是将对月观测原始计数值换算为全圆盘辐照度,以便与月球辐射模型比较。具体到中分辨率光谱成像仪(MERSI),本文从MERSI观测模式出发构建出月亮进入冷空视场的阈值判识模型。根据MERSI对月观测的成像几何和定标公式,分别以单探元多帧扫描图像和多探元单帧扫描图像为基础,构建出月球全圆盘辐照度算法。结果显示,阈值判识模型可以实现从平均约30 d的观测数据中,准确标记出约1 min的月亮图像数据。两种计算辐照度的方法得到的辐照度平均差异约0.9%。所提方法可以将原始的对月观测数据计算为辐照度值,为进一步的绝对辐射定标及误差分析提供基础,同时,也可以为类似的成像遥感器的月亮定标工作提供参考。
Lunar calibration is an effective method for visible and near-infrared spectrum remote sensors. Original lunar observation data should be pre-processed into lunar full disk irradiance in order to compare them with a lunar radiation model. This paper describes the pre-processing of lunar data of the MERSI on the FY-3D satellite. The data pre-processing includes two steps. First
the lunar observation data are identified from the massive space view data. Then
the identified lunar original digital count is converted into full disk irradiance. Based on the MERSI observation mode
the lunar zenith and azimuth in the instrument reference coordinate system are used to construct a threshold model. When the zenith and azimuth meet the threshold conditions
the data are identified as lunar image. According to MERSI's imaging geometry and calibration formula
the lunar full disk irradiance can be calculated from two different lunar images. Irradiance from a single-detector multi-scan image needs to be corrected for the over-sample factor
and irradiance from a multi-detector single-scan image needs to be corrected for the radiation response difference between detectors. Based on this method
about 1 minute of lunar observation data among 30 days can be found and identified. The results show that the average difference of irradiance between the two methods is about 0.9%. The pre-processing method presented in this paper can find the original lunar observation data and convert them to full disk irradiance value
which provides a basis for further absolute radiation calibration and error analysis. It can also provide a reference for lunar calibration of other similar remote sensors.
KIEFFER H H, WILDEY R L. Establishing the moon as a spectral radiance standard[J]. Journal of atmospheric and oceanic technology , 1996, 13(2): 360-375.
ZHANG P, YANG J, DONG C H, et al .. General introduction on payloads, ground segment and data application of Fengyun 3A[J]. Frontiers of Earth Science in China , 2009, 3: 367-373.
YANG J, ZHANG P, LU N M, et al .. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond[J]. International Journal of Digital Earth , 2012, 5(3): 251-265.
SUN J Q, XIONG X X, BARNES W L, et al .. MODIS reflective solar bands on-orbit lunar calibration[J]. IEEE Transactions on Geoscience and Remote Sensing , 2007, 45(7): 2383-2393.
EPLEE R E, BARNES R A, PATT F S, et al .. SeaWiFS lunar calibration methodology after six years on orbit[C]. Earth Observing Systems Ix, ed. W.L. Barnes and J.J. Butler , 2004(5542): 1-13.
WAGNER S C, HEWISON T, STONE T, et al .. A summary of the joint GSICS-CEOS/IVOS lunar calibration workshop: moving towards intercalibration using the Moon as a transfer target[C]. Sensors, Systems, and Next-Generation Satellites XIX , 2015.
陈林, 张鹏, 吴荣华, 等.月球目标监测风云二号静止气象卫星可见光辐射响应变化[J]遥感学报, 2018(2): 211-219
CHEN L, ZHANG P, WU R H, et al .. Monitoring radiometric response change of visible band for FY-2 geostationary meteorological satellite by lunar target[J]. Journal of Remote Sensing , 2018(2): 211-219.(in Chinese)
郭强, 陈博洋, 杨昌军, 等.风云二号卫星水汽波段在轨辐射定标新方法[J].红外与毫米波学报, 2012, 31(6): 5.
GUO Q, CHEN B C, YANG CH J, et al .. A new approach of on-orbit radiometric calibration for water-vapor band of FY-2 satellite[J]. Journal of Infrared&millimeter Wave , 2012, 31(6): 5. (in Chinese)
张璐, 张鹏, 胡秀清, 等.月球辐射照度模型比对及地基对月观测验证.[J]遥感学报, 2017, 21(6): 864-870.
ZHANG L, ZHANG P, HU X Q, et al .. Comparison of lunar irradiance models and validation of lunar observation on Earth[J]. Journal of Remote Sensing , 2017, 21(6): 864-870.(in Chinese)
ZHANG L, ZHANG P, HU X Q. A novel hyperspectral lunar irradiance model based on ROLO and mean equigonal albedo[J]. Optik-International Journal for Light and Electron Optics , 2017, 142(2017): 657-664.
吴荣华, 张鹏, 杨忠东, 等.基于月球反射的遥感器定标跟踪监测[J].遥感学报, 2016, 20(2): 278-289.
WU R H, ZHANG P, YANG ZH D, et al .. Monitor radiance calibration of the remote sensing instrument with reflected lunar irradiance[J]. Journal of Remote Sensing , 2016, 20(2): 278-289. (in Chinese)
XU N, NIU X H, HU X Q, et al .. Prelaunch calibration and radiometric performance of the advanced MERSI Ⅱ on FengYun-3D[J]. IEEE Transactions On Geoscience And Remote Sensing , 2018.
YANG Z D, ZHEN Y Q, YIN Z S, et al .. Prelaunch radiometric calibration of the tansat atmospheric carbon dioxide[J]. Grating Spectrometer , 2018:1-9.
YANG J, ZHANG X Q, WEI C Y, et al .. Introducing the new generation of Chinese geostationary weather satellites-FengYun 4 (FY-4)[J]. Bulletin of the American Meteorological Society , 2016, 98(9).
胡秀清, 张里阳, 郑照军, 等. FY-3A中分辨率光谱成像仪热红外通道的多探元辐射定标[J]光学 精密工程, 2010, 18(9): 1972-1980.
HU X Q, ZHANG L Y, ZHENG ZH J, et al .. FY-3A multi-detector radiometric calibration for infrared band of medium resolution spectral imager[J]. Opt. Precision Eng. , 2010, 18(9): 1972-1980. (in Chinese)
0
浏览量
100
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构