浏览全部资源
扫码关注微信
天津大学 电气自动化与信息工程学院,天津 300072
[ "金志刚(1972-),男,天津人,教授,博士生导师,天津市政府决策咨询专家,曾任天津大学网络中心总工程师,天津大学计算机系副主任,主要从事机器学习、水下网络、社交网络等方面的研究。E-mail:zgjin@tju.edu.cn" ]
[ "李静昆(1994-),女,河北石家庄人,硕士研究生,主要从事机器视觉、图像处理方面的研究。E-mail:ljk_smile_girl@163.com" ]
收稿日期:2018-12-11,
录用日期:2019-1-28,
纸质出版日期:2019-08-15
移动端阅览
金志刚, 李静昆. 基于对象性和多层线性模型的协同显著性检测[J]. 光学 精密工程, 2019,27(8):1845-1853.
Zhi-gang JIN, Jing-kun LI. Co-saliency detection based on objectness and multi-layer linear model[J]. Optics and precision engineering, 2019, 27(8): 1845-1853.
金志刚, 李静昆. 基于对象性和多层线性模型的协同显著性检测[J]. 光学 精密工程, 2019,27(8):1845-1853. DOI: 10.3788/OPE.20192708.1845.
Zhi-gang JIN, Jing-kun LI. Co-saliency detection based on objectness and multi-layer linear model[J]. Optics and precision engineering, 2019, 27(8): 1845-1853. DOI: 10.3788/OPE.20192708.1845.
针对背景环境复杂的图像组中协同显著性检测的共显性目标混乱不一致、准确率低的问题,提出了一种基于对象性和多层线性模型的图像协同显著性检测方法。首先通过显著性先验和对象性概率加权的背景引导因子BGO计算图像间显著性引导传播的显著值;然后设计了一种局部区域特征计算图像内显著值,并使用图像的hu矩的零、一阶和二阶矩对两阶段显著值进行整合;最后通过多层线性模型自适应地融合各个显著图得到最终结果。实验结果表明:本文算法分别在iCoseg和MSRC两个数据集上的平均精度达到了87.80%和83.50%,在其它实验指标上的评估结果也有明显提高,增强了算法的适应能力。
To address the confusion and low accuracy of salient objects in co-saliency detection for image groups with complex environments
we proposed a co-saliency detection model based on objectness and a multi-layer linear model. First
we calculated the inter-saliency values using the background guidance factor weighted by saliency prior and objectness probability. We then designed a local region feature to calculate the intra-saliency values. The zero
first
and second Hu moments of the image were used to integrate the two-stage saliency values. Finally
saliency subgraphs were adaptively fused using a multi-layer linear model. Experimental results reveal that the AP scores of the proposed algorithm are 87.80% on iCoseg datasets and 83.50% on the MSRC dataset. Results from the evaluation of other experimental indicators are also improved significantly. The detected salient objects are more accurate and the adaptability of the algorithm is enhanced.
ZHANG D, FU H, HAN J, et al .. A review of co-saliency detection algorithms: fundamentals, applications, and challenges[J]. Acm Transactions on Intelligent Systems & Technology , 2018, 9(4):1-31.
ZHANG D, MENG D, HAN J. Co-saliency detection via a self-paced multiple-instance learning framework[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence , 2017, 39(5):865-878.
CHENG M M, MITRA N J, HUANG X, et al .. SalientShape: group saliency in image collections[J]. The Visual Computer , 2014, 30(4):443-453.
蔡强, 郝佳云, 曹健, 等.结合局部特征及全局特征的显著性检测[J].光学 精密工程, 2017, 25(3): 772-778.
CAI Q, HAO J Y, CAO J, et al .. Salient detection via local and global feature[J]. Opt. Precision Eng. , 2017, 25(3): 772-778. (in Chinese)
丁鹏, 张叶, 贾平, 等.基于多尺度多特征视觉显著性的海面舰船检测[J].光学 精密工程, 2017, 25(9): 2461-2468.
DING P, ZHANG Y, JIA P, et al .. Ship detection on sea surface based on multi-feature and multi-scale visual attention[J]. Opt. Precision Eng. , 2017, 25(9): 2461-2468. (in Chinese)
LI H, MENG F, NGAN K N. Co-salient object detection from multiple images[J]. IEEE Transactions on Multimedia , 2013, 15(8):1896-1909.
CHANG K Y, LIU T L, CHEN H T, et al .. Fusing generic objectness and visual saliency for salient object detection[C]. International Conference on Computer Vision. IEEE Computer Society , 2011: 914-921.
BORJI A, SIHITE D N, ITTI L. What/Where to look next? Modeling top-down visual attention in complex interactive environments[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems , 2014, 44(5):523-538.
ZHAO Q, KOCH C. Learning a saliency map using fixated locations in natural scenes[J]. Journal of vision , 2011, 11(3): 1-9.
ACHANTA R, SHAJI A, SMITH K, et al .. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2012, 34(11):2274-2282.
QIN Y, LU H, XU Y, et al .. Saliency detection via cellular automata[C]. Computer Vision & Pattern Recognition. IEEE , 2015: 110-119.
YE L, LIU Z, LI L, et al .. Salient object segmentation via effective integration of saliency and objectness[J]. IEEE Transactions on Multimedia , 2017:1-1.
宋策, 张葆, 宋玉龙, 等.基于场景辅助特征的T-S目标跟踪[J].光学 精密工程, 2018, 26(8): 2122-2131.
SONG C, ZHANG B, SONG Y L, et al .. T-S tracking algorithm based on context auxiliary feature[J]. Opt. Precision Eng. , 2018, 26(8): 2122-2131. (in Chinese)
赵东波, 李辉.基于中心矩特征和GA-BP神经网络的雷达目标识别[J].红外与激光工程, 2018, 47(8): 826005-0826005(7). http://www.cnki.com.cn/Article/CJFDTotal-HWYJ201808055.htm
ZHAO D B, LI H. Radar target recognition based on central moment feature and GA-BP neural network[J]. Infrared and Laser Engineering , 2018, 47(8): 826005-0826005(7). (in Chinese)
BATRA D, KOWDLE A, PARIKH D, et al .. iCoseg: Interactive co-segmentation with intelligent scribble guidance[C]. Computer Vision & Pattern Recognition. IEEE , 2010: 3169-3176.
WINN J, CRIMINISI A, MINKA T. Object categorization by learned universal visual dictionary[C]. Tenth IEEE International Conference on Computer Vision. IEEE , 2005: 1800-1807.
FU H, CAO X, TU Z. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society , 2013, 22(10):3766-3778.
LI Y, FU K, LIU Z, et al .. Efficient saliency-model-guided visual co-saliency detection[J]. IEEE Signal Processing Letters , 2014, 22(5):588-592.
CAO X, TAO Z, ZHANG B, et al .. Self-adaptively weighted co-saliency detection via rank constraint[J]. IEEE Transactions on Image Processing , 2014, 23(9):4175-4186.
LIU Z, ZOU W, LI L, et al .. Co-saliency detection based on hierarchical segmentation[J]. IEEE Signal Processing Letters , 2013, 21(1):88-92.
0
浏览量
94
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构