浏览全部资源
扫码关注微信
清华大学 机械工程系 摩擦学国家重点实验室&精密超精密制造装备及控制北京市重点实验室, 北京 100084
[ "王磊杰(1988-),男,河南周口人,博士,助理研究员,2010年于中国矿业大学(北京)获得学士学位,2016年于清华大学获得博士学位,主要研究方向为基于扫描干涉光刻的大口径光栅制造技术、超精密光栅编码器位移测量技术和超精密激光编码器位移测量技术。E-mail:wang-lj66@mail.tsinghua.edu.cn" ]
[ "张鸣(1973-),男,吉林扶余人,副研究员,1996年于北京科技大学获得学士学位,1999年于中国运载火箭研究院13所获得硕士学位,2005年于清华大学获得博士学位,主要研究方向为高端光刻机超精密工件台的研制,涉及超精密工件台系统设计,结构设计、超精密制造工艺、高性能驱动、超精密测量及超精密环境保障等工件台研发的核心领域。E-mail: zhangming@mail.tsinghua.edu.cn" ]
收稿日期:2019-05-02,
录用日期:2019-6-13,
纸质出版日期:2019-09-15
移动端阅览
王磊杰, 张鸣, 朱煜, 等. 面向浸没式光刻机的超精密光学干涉式光栅编码器位移测量技术综述[J]. 光学 精密工程, 2019,27(9):1909-1918.
Lei-jie WANG, Ming ZHANG, Yu ZHU, et al. Review of ultra-precision optical interferential grating encoder displacement measurement technology for immersion lithography scanner[J]. Optics and precision engineering, 2019, 27(9): 1909-1918.
王磊杰, 张鸣, 朱煜, 等. 面向浸没式光刻机的超精密光学干涉式光栅编码器位移测量技术综述[J]. 光学 精密工程, 2019,27(9):1909-1918. DOI: 10.3788/OPE.20192709.1909.
Lei-jie WANG, Ming ZHANG, Yu ZHU, et al. Review of ultra-precision optical interferential grating encoder displacement measurement technology for immersion lithography scanner[J]. Optics and precision engineering, 2019, 27(9): 1909-1918. DOI: 10.3788/OPE.20192709.1909.
超精密平面光栅编码器位移测量技术是32~7 nm节点浸没式光刻机的核心技术。通过分析浸没式光刻机平面光栅位置系统的需求和布局,提出了光刻机专用超精密平面光栅编码器的基本需求。针对现有的光栅编码器,开展了基本测量光路方案、相位探测方案、分辨率增强光路方案、离轴/转角允差光路方案、死程误差抑制光路方案的综述分析,提出了现有设计方案面向光刻机应用所需要解决的关键问题。面向亚纳米级测量精度的需求,针对光栅编码器的仪器误差,对周期非线性误差、死程误差、热漂移误差和波前畸变误差进行了综述分析,提出了平面光栅编码器实现亚纳米精度所需要解决的关键问题。本综述为光刻机专用超精密平面光栅编码器的研制提供了参考。
The ultra-precision grid encoder is the key technology of the immersion lithography scanner for 32-7 nm node. Firstly
by analyzing the requirements and layout of the grid encoder position measurement system of the immersion lithography scanner
the basic requirement of a special grid encoder for the scanner is proposed. Secondly
for the present grating encoder
research on the basic optical path
phase detection
resolution multiplication
off-axis/rotation tolerance
and dead-path restrain scheme is reviewed and analyzed. Then
the key problems of the present scheme in the application of the lithography scanner are proposed. Thirdly
to address the required nanometer accuracy for the instrumental error of the grid encoder
the research on nonlinearity
dead-path
thermal drift
and wave-front distortion error are reviewed and analyzed; and the key problems to achieve sub-nanometer accuracy for the grid encoder are proposed. Finally
the above review is summarized
which can serve as a reference for the special grid encoder of immersion lithography scanner.
DE JONG F, PASC B, CASTENMILLER T, et al . Enabling the lithography roadmap: an immersion tool based on a novel stage positioning system[J]. SPIE , 2009, 7274: 72741S.
CASTENMILLER T, MAST F, KORT T, et al . Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform[J]. SPIE , 2010, 7640: 76401N.
SHIBAZAKI Y, KOHNO H, HAMATANI M, et al . An innovative platform for high-throughput, high-accuracy lithography using a single wafer stage[J]. SPIE , 2009, 7274: 72741l.
WANG L J, ZHANG M, ZHU Y, et al . A novel heterodyne planar grating encoder system for in-plane and out-of-plane displacement measurement with nanometer-resolution[C]// Proceedings of the 29th annual meeting of the American Society for Precision Engineering, Boston, USA: ASPE , 2014: 173-177.
KONKOLA T P. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions [D]. Cambridge: Massachusetts Institute of Technology, 2003.
WANG L J, ZHANG M, ZHU Y, et al . Progress on scanning beam interference lithography tool with high environmental robustness for patterning large size grating with nanometre accuracy[C]// Proceedings of the 17th annual meeting of the European Society for Precision Engineering and Nanotechnology , Hannover, Germany: EUSPEN, 2017: 173-177.
王磊杰, 张鸣, 朱煜, 等.零差移频式干涉图形相位锁定系统的超精密控制[J].光学 精密工程, 2017, 25(5): 1213-1221.
WANG L J, ZHU Y, ZHANG M, et al . Ultra-precision control of homodyne frequency-shifting interference pattern phase locking system[J]. Opt. Precision Eng. , 2017, 25(5): 1213-1221. (in Chinese)
王磊杰, 张鸣, 鲁森, 等.零差移频式干涉图形相位锁定系统的超精密控制[J].光学 精密工程, 2017, 25(5): 1213-1221.
WANG L J, ZHANG M, LU S, et al . Ultra-precision control of homodyne frequency-shifting interference pattern phase locking system[J]. Opt. Precision Eng. , 2017, 25(5): 1213-1221.(in Chinese)
JI G F, HU J C, ZHU Y, et al . A grating interferometer-based six-degree-of-freedom measurement method for ultra-precision motion stages[C]// Proceedings of the 29th annual meeting of the American Society for Precision Engineering, Boston, USA: ASPE , 2014: 445-450.
LEE C K, WU C C, CHEN S J, et al . Design and construction of linear laser encoders that possess high tolerance of mechanical runout[J]. Applied Optics , 2004, 43(31): 5754-5762.
LEE J Y, CHEN H Y, HSU C C, et al . Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution[J]. Sensors and Actuators A: Physical , 2007, 137(1): 185-191.
WU C C, HSU C C, LEE J Y, et al . Optical heterodyne laser encoder with sub-nanometer resolution[J]. Measurement Science and Technology , 2008, 19: 045305.
HOLZAPFEL W. Advancements in displacement metrology based on encoder system[C]. Proceedings of the 23th annual meeting of the American Society for Precision Engineering, Portland, USA: ASPE , 2008: 71-74.
KAO C F, LU S H, SHEN H M, et al . Diffractive laser encoder with a grating in Littrow configuration[J]. Japanese Journal of Applied Physics , 2008, 47(3): 1833-1837.
GUAN J, KÖCHERT P, WEICHERT C, et al . A high performance one-dimensional homodyne encoder and the proof of principle of a novel two-dimensional homodyne encoder[J]. Precision Engineering , 2013, 37(4): 865-870.
CHENG F, FAN K C. Linear diffraction grating interferometer with high alignment tolerance and high accuracy[J]. Applied Optics , 2012, 50 (22): 4550-4556.
WU C C, CHENG C, YANG Z. Optical homodyne common-path grating interferometer with subnanometer displacement resolution[J]. SPIE , 2010, 7791: 779105.
HSIEH H L, LEE J Y, WU W T, et al . Quasi-common-optical-path heterodyne grating interferometer for displacement measurement[J]. Measurement Science and Technology , 2010, 21(11): 115304.
程方.纳米三坐标测量机测控系统关键技术研究[D].合肥: 合肥工业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10359-2010245759.htm
CHENG F. Study on the key technology of nano-CMM measurement and control system [D]. Hefei: Hefei University of Technology, 2010.(in Chinese)
尚平.高精度衍射光栅干涉位移传感器及关键技术研究[D].合肥: 合肥工业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10359-1012522187.htm
SHANG P. Study on the key technology of high-resolution diffraction grating interferometric transducer of linear displacements [D]. Hefei: Hefei University of Technology, 2012.(in Chinese)
王磊杰, 张鸣, 朱煜, 等.超精密外差利特罗式光栅干涉仪位移测量系统[J].光学 精密工程, 2017, 25(12): 2975-2985.
WANG L J, ZHANG M, ZHU Y, et al . A displacement measurement system for ultra-precision heterodyne Littrow grating interferometer[J]. Opt. Precision Eng. , 2017, 25(12): 2975-2985.(in Chinese)
KAO C F, LU S H, LU M H, et al . High resolution planar encoder by retro-reflection[J]. Review of Scientific Instruments , 2005, 76: 085110.
KAO C F, Chang C C, LU M H. Double-diffraction planar encoder by conjugate optics[J] . Optical Engineering , 2005, 44(2): 023603.
HSU C C, WU C C, LEE J Y, et al . Reflection type heterodyne grating interferometry for in-plane displacement measurement[J]. Optics Communications , 2008, 281(9): 2582-2589.
FENG C, ZENG L J and WANG S W. Heterodyne planar grating encoder with high alignment tolerance, especially insensitivity to grating tilts[J]. SPIE , 2013, 8759: 87593L.
XIA H J, FEI Y T and ZHANG M. Error Analysis of 2-D diffraction grating interferometer for high resolution displacement measurement[J]. SPIE , 2008: 7130: 713052.
LIN C B, YAN S H, DU Z G, et al . High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision[J]. Optics Communications , 2015, 339: 86-93.
KIMURA A, WEI G, ARAI Y, et al . Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering , 2010, 34(1): 145-155.
TRUTNA W, OWEN G, RAY A, et al . Littrow interferometer: US, US7440113B2[P].[2008-10-21] .
DE GROOT P, BADAMI V, LIESENER J. Concepts and geometries for the next generation of precision heterodyne optical encoders[C]. Proceedings of the 31th annual meeting of the American Society for Precision Engineering, Charlotte, USA: ASPE , 2016: 4660.
DECK L, DE GROOT P, SCHROEDER M. Interferometric encoder system: US, US2011/0255096A2[P].[2011-0-20].
LIESENER J. Interferometric encoder system: US, US2016/0102999A1[P].[2016-4-11].
KIMURA A, GAO W, KIM W, et al . A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering , 2012, 36(4): 576-585.
SAITO Y, ARAI Y, GAO W. Detection of three-axis angles by an optical sensor[J]. Sensors and Actuators A: Physical , 2009, 150(2): 175-183.
LI X H, GAO W, MUTO H, et al . A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering , 2013, 37(3): 771-781.
ELLIS J D. Front matter [M]//Field Guide to Displacement Measuring Interferometry, SPIE, DOI:10.1117/3.1002328.fm
DEMAREST F C. High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics[J]. Measurement Science and Technology , 1998, 9(7): 1024-1030.
HEYDEMAN P. Determination and correction of quadrature fringe measurement errors in interferometers[J]. Applied Optics , 1981, 20 (19):3382-3384.
邓元龙, 李学金, 耿优福, 等.非偏振分光镜对外差干涉仪非线性误差的影响[J].光学学报, 2012, 32(11): 146-151.
DENG Y L, LI X J, GENG Y F, et al . Influence of nonpolarizing beam splitters on nonlinear error in heterodyne interferometers[J]. Acta Optica Sinica , 2012, 32(11): 146-151.(in Chinese)
SCHMITZ T L, BECKWITH J F. An investigation of two unexplored periodic error sources in differential-path interferometry[J]. Precision Engineering , 2003, 27(3): 311-322.
BADAMI V G, PATTERSON S R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry[J]. Precision Engineering , 2000, 24(1): 41-49.
HOU W M. Optical parts and the nonlinearity in heterodyne interferometers[J]. Precision Engineering , 2006, 30(3): 337-346.
DE GROOT P. Jones matrix analysis of high-precision displacement measuring interferometers[C]. Proceedings of the 2nd topical meeting on optoelectronic distance measurement and applications, Pavia, Italy: ODIMA , 1999: 9-14.
BIRCH K, DOWNS M. Correction to the updated Edlen equation for the refractive index of air[J]. Metrologia , 1994, 31:315-316.
HOMLMES M, EVANS C. Displacement measuring interferometry measurement uncertainty[C] . Proceedings of the topical summer meeting of the American Society for Precision Engineering, Pennsylvania, USA: ASPE , 2004: 4660.
0
浏览量
27
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构