浏览全部资源
扫码关注微信
苏州大学 机器人与微系统研究中心,江苏 苏州 215021
[ "陈立国(1974-),男,辽宁葫芦岛人,博士生导师,教授,1997年于哈尔滨理工大学获得学士学位,2003年于哈尔滨工业大学获得博士学位,主要从事微操作,微驱动机器人方面的研究。E-mail:chenliguo@suda.edu.cn" ]
王兆龙(1994-),男,江苏徐州人,硕士研究生,2017年于淮海工学院获得学士学位,主要从事数字微流控芯片等方面的研究。E-mail: 349323895@qq.com WANG Zhao-long, E-mail: 349323895@qq.com
收稿日期:2019-04-15,
录用日期:2019-6-10,
纸质出版日期:2019-09-15
移动端阅览
陈立国, 王兆龙, 卞雄恒. 扇形电极微液滴分离的数字微流控芯片[J]. 光学 精密工程, 2019,27(9):1919-1925.
Li-guo CHEN, Zhao-long WANG, Xiong-heng BIAN. Micro-droplet split digital microfluidic device with fan-shaped electrode[J]. Optics and precision engineering, 2019, 27(9): 1919-1925.
陈立国, 王兆龙, 卞雄恒. 扇形电极微液滴分离的数字微流控芯片[J]. 光学 精密工程, 2019,27(9):1919-1925. DOI: 10.3788/OPE.20192709.1919.
Li-guo CHEN, Zhao-long WANG, Xiong-heng BIAN. Micro-droplet split digital microfluidic device with fan-shaped electrode[J]. Optics and precision engineering, 2019, 27(9): 1919-1925. DOI: 10.3788/OPE.20192709.1919.
针对目前液滴在方形电极上分离存在的成功率低,分离后的子液滴体积误差大等问题,本文提出了一种扇形电极结构的数字微流控芯片。在分析液滴在方形电极上分离的影响因素后,结合半月形电极、哑铃状电极和弓形电极的优点设计了扇形电极。与传统分离方式相比,新型芯片在分离前能够调整液滴的初始位置,分离过程中能保证液滴平稳收缩,从而提高分离的成功率和精度。最后使用去离子水作为实验对象,对扇形芯片的分离效果进行了实验验证。结果表明:使用扇形电极在不同极板间距下分离液滴的成功率均高于传统电极,并且分离后的子液滴平均误差在±2%以内,变异系数低至1.83%,通过减少分离电极的尺寸还能进一步提高分离精度。实验数据证明了扇形分离电极数字微流控芯片能够提高分离的成功率和精度。
To address the low success rate of droplet separation and the inaccurate daughter droplet volume on the square electrode
a digital microfluidic chip with fan-shaped electrode was proposed and its separation effect was studied. After analyzing the factors affecting droplet separation on the square electrode
the fan-shaped electrode was designed in combination with the advantages of crescent electrodes
dumbbell electrode
and bow electrodes. Compared with traditional separation
the novel chip can adjust the initial position of the droplets before separation to ensure the smooth shrinkage of the droplet during the separation process and improve the success rate and precision of the droplet volume. Deionized water was used as the experimental object to verify the separation effect of the novel chip. The results show that the success rates of droplet separation at different channel heights on novel electrodes are higher than that on conventional electrodes. The average error of daughter droplets is controlled at ±2%
and the coefficient of variation is as low as 1.83%. The separation accuracy can be further improved by reducing the size of the separation electrodes. The experimental results indicate that the separation success rate and splitting precision on digital microfluidic chip with fan-shaped electrode was significantly improved.
叶雄英, 徐文晓, 谢帅, 等.面向航天医学应用的体液预处理仪研制[J].光学 精密工程, 2017, 25(8): 2083-2089.
YE X Y, XU W X, XIE SH, et al . Development of a body fluids pretreatment instrument for aerospace medicine[J]. Opt. Precision Eng. , 2017, 25(8): 2083-2089. (in Chinese)
徐可欣, 陈小龙, 栗大超, 等.基于微流控和酶比色的微创血糖连续检测仪[J].光学 精密工程, 2018, 26(11): 2615-2622.
XU K X, CHEN X L, LI D CH, et al . Minimally invasive continuous blood glucose monitor based on microfluidic and enzyme colorimetric technologies[J]. Opt. Precision Eng. , 2018, 26(11): 2615-2622. (in Chinese)
MARK D, HAEBERLE S, ROTH G, et al . Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications[J]. Chemical Society Reviews , 2010, 39(3): 1153-1182.
FOUILLET Y, JARY D, CHABROL C, et al . Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems[J]. Microfluidics and Nanofluidics , 2008, 4(3): 159-165.
JEBRAIL M J, BARTSCH M S, PATEL K D. Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine[J]. Lab on a Chip , 2012, 12(14): 2452-2463.
TEH S Y, LIN R, HUNG L H, et al . Droplet microfluidics[J]. Lab on a Chip , 2008, 8(2): 198-220.
CHOI K, NG A H C, FOBEL R, et al . Digital microfluidics[J]. Annual Review of Analytical Chemistry , 2012, 5(8):413-440.
ROSE D. Microdispensing technologies in drug discovery[J]. Drug Discovery Today , 1999, 4(9): 411-419.
REN H, FAIR R B, POLLACK M G. Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering[J] . Sensors and Actuators B: Chemical , 2004, 98(2/3): 319-327.
NIKAPITIYA N Y J B, NAHAR M M, MOON H. Accurate, consistent, and fast droplet splitting and dispensing in electrowetting on dielectric digital microfluidics[J]. Micro and Nano Systems Letters , 2017, 5(1): 1-10.
DONG C, JIA Y W, GAO J, et al . A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips[J]. Lab on a Chip , 2017, 17(5): 896-904.
SONG J H, EVANS R, LIN Y Y, et al . A scaling model for electrowetting-on-dielectric microfluidic actuators[J]. Microfluidics and Nanofluidics , 2009, 7(1): 75-89.
CHO S K, MOON H, KIM C J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits[J]. Journal of Microelectromechanical Systems , 2003, 12(1): 70-80.
BIAN X H, CHEN L G, XU X W. A novel crescent electrode for droplet splitting in digital microfluidic[C]. 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 2015: 2036-2039. https://www.researchgate.net/publication/308817388_A_novel_crescent_electrode_for_droplet_splitting_in_digital_microfluidic
陈建锋.新型EWOD数字微流控芯片研究[D].上海: 复旦大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10246-1015410944.htm
CHEN J F. Study of Novel Digital Microfluidic Chips Based on EWOD [D]. Shanghai: Fudan University, 2014. (in Chinese)
0
浏览量
139
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构