浏览全部资源
扫码关注微信
郑州轻工业大学 电气信息工程学院,河南 郑州 450000
[ "姜利英 (1981-),女,河南郾城人,博士,教授,2007年于中国科学院电子学研究所获得博士学位,主要从事生物传感器及检测微系统方面的研究。E-mail:jiangliying@zzuli.edu.cn" ]
任林娇 (1987-),河南济源人,博士,讲师,2010年、2015年于重庆大学分别获得学士、博士学位,主要从事特种荧光材料制备与生物荧光传感检测相关领域的科研工作。E-mail:renlinjiao@zzuli.edu.cn REN Lin-jiao, E-mail:renlinjiao@zzuli.edu.cn
王慰 (1969-),男,博士,教授,2010年入选国家千人计划,成为国家特聘专家。2011-2017年担任中科院物联网中心的传感器研究室主任和北京印刷学院首席科学家,从事计算机视觉与人工智能,触觉感知与人工智能,智能传感器设计等方面的学术研究,并致力于人工智能、智能传感器、创客教育等技术的产业化。E-mail: 18900616029@189.cn WANG Wei, E-mail: 18900616029@189.cn
收稿日期:2019-05-28,
录用日期:2019-7-12,
纸质出版日期:2019-09-15
移动端阅览
姜利英, 杭欣欣, 张培, 等. 用于检测多巴胺的荧光增强型适体传感器[J]. 光学 精密工程, 2019,27(9):1943-1949.
Li-ying JIANG, Xin-xin HANG, Pei ZHANG, et al. Fluorescence-enhanced aptamer sensor for dopamine detection[J]. Optics and precision engineering, 2019, 27(9): 1943-1949.
姜利英, 杭欣欣, 张培, 等. 用于检测多巴胺的荧光增强型适体传感器[J]. 光学 精密工程, 2019,27(9):1943-1949. DOI: 10.3788/OPE.20192709.1943.
Li-ying JIANG, Xin-xin HANG, Pei ZHANG, et al. Fluorescence-enhanced aptamer sensor for dopamine detection[J]. Optics and precision engineering, 2019, 27(9): 1943-1949. DOI: 10.3788/OPE.20192709.1943.
利用贵金属纳米颗粒独特的物理特性,设计具有信号放大功能的荧光适体传感器用于多巴胺的浓度检测。基于金属荧光增强效应通过在金纳米颗粒与荧光基团之间添加隔离层的手段实现荧光信号放大。将化学修饰了SH键的核酸适体与金纳米颗粒溶液混合,形成稳定的Au-S键结构并与标记荧光基团的DNA互补链利用碱基互补配对原则结合。然后,通过调节所设计的核酸适体5′所添加的碱基A的数量,从而调节荧光基团与金纳米颗粒表面的距离。同时,优化核酸适体与金纳米颗粒之间的浓度比以及所处的反应环境的pH值,获得最佳的放大效率。最后对不同浓度的多巴胺进行测试。实验结果表明:金纳米颗粒溶液与核酸适体在一定的浓度比之下,在隔离层厚度为27个碱基A时,最大的荧光增强倍数为2.35。多巴胺浓度检测的线性范围为20~100 nmol/L
最低检测限为20 nmol/L。该传感器可以在纳米级有效调控隔离层厚度,提供了一种稳定的信号放大策略。
Based on the unique physical properties of noble metal nanoparticles
a fluorescence sensor with signal amplification function was designed for detecting the concentration of dopamine. Based on the effect of metal fluorescence enhancement
the fluorescence signal was amplified by adding a spacer layer between the gold nanoparticles and fluorophore. First
the aptamer chemically modified with an SH bond was mixed with a gold nanoparticle solution to form a stable Au-S bond structure. Then
the DNA labeled with fluorescent groups were bound due to the complementary base pairing. The distance between the fluorophore and the surface of the gold nanoparticle was adjusted by changing the amount of base A. At the same time
the concentration ratio between the aptamer and gold nanoparticles and the pH of the reaction environment were optimized to obtain the best amplification efficiency. Finally
different concentrations of dopamine were tested. The experimental results indicate that at a certain concentration ratio between the gold nanoparticle solution and aptamer
the maximum fluorescence enhancement is 2.35 times at the isolation layer thickness is 27 base A. Dopamine concentration detection has a linear range of 20-100 nmol/L. The detection limit is 20 nmol/L. It can effectively regulate the isolation layer thickness at the nanometer level
providing a stable signal amplification strategy.
LI X Y, CHENG R J, SHI H J, et al . A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples[J]. Journal of Hazardous Materials , 2015, 304(1):474-480.
WANG B, CHEN Y F, WU Y Y, et al . Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1[J]. Biosensors and Bioelectronics , 2016, 78: 23-30.
HE Y, LIN Y, TANG H, et al . A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1[J]. Nanoscale , 2012, 4:2054-2059.
MA K, ZHANG F, SAYYADI N, et al . "Turn-on" fluorescent aptasensor based on AIEgen labeling for the localization of IFN-γ in live cells[J]. ACS Sensors , 2018, 3(2):7b00720.
KEEFE A D, PAI S, ELLINGTON A. Aptamers as therapeutics[J]. Nature Reviews Drug Discovery , 2010, 9(7): 537-550.
RUTKOWSKA A, FREEDMAN K, SKALKOWSKA J, et al . Electrodeposition and bipolar effects in metallized nanopores and their use in the detection of insulin[J]. Analytical Chemistry , 2015, 87(4):2337-2344.
ROYCHOUDHURY A, BASU S, JHA S K. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform[J]. Biosensors and Bioelectronics , 2016, 84: 72-81.
KHOSHFETRAT S M, BAGHERI H, MEHRGARDI M A. Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide[J]. Biosensors and Bioelectronics , 2018, 100: 382-388.
李超, 郭振, 张威, 等.用于凝血酶原时间检测的多壁碳纳米管增强型电化学传感器[J].光学 精密工程, 2019, 27(6): 1345-1353.
LI CH, GUO ZH, ZHANG W, et al . Multi-walled carbon nanotubes enhanced electrochemical sensor for prothrombin time detection[J]. Opt. Precision Eng. , 2019, 27(6): 1345-1353. (in Chinese)
GAO D, LI H F, WANG N J, et al . Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer[J]. Analytical Chemistry , 2012, 84(21) :121022155012001.
罗道斌, 韩香娥, 段璐杰.球形金纳米颗粒的消光特性及不同折射率环境下的共振波长[J].光学 精密工程, 2017, 25(3): 625-631.
LUO D B, HAN X G, DUAN L J. Extinction characteristics and resonant wavelength of spherical gold nanoparticles in different ambient mediums[J]. Opt. Precision Eng. , 2017, 25(3): 625-631. (in Chinese)
DONG J, ZHANG Z, ZHENG H, et al . Erratum to: recent progress on plasmon-enhanced fluorescence[J]. Nanophotonics , 2017, 6(2):472-490.
WANG Y, LI H, XU D K. Aptamers-based sandwich assay for silver-enhanced fluorescence multiplex detection[J]. Analytica Chimica Acta , 2015, 905:149-155.
NIE Y H, TENG Y J, LI P, et al . Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy , 2017, 191: 271-276.
YE S J, WU Y Y, ZHAI X M, et al . Asymmetric signal amplification for simultaneous SERS detection of multiple cancer markers with significantly different levels[J]. Analytical Chemistry , 2015, 87(16) :8242-8249.
吴江宏, 程培红, 张驰, 等.金属纳米结构增强荧光的研究进展[J].光谱学与光谱分析, 2018, 38(1): 128-133.
WU J H, CHENG P H, ZHANG CH, et al . New development of metal nanostructures enhanced fluorescence[J]. Spectroscopy and Spectral Analysis , 2018, 38(1): 128-133. (in Chinese)
ASSELIN J, LEGROS P, GRÖGOIRE A, et al . Correlating metal-enhanced fluorescence and structural properties in Ag@SiO_2 core-shell nanoparticles[J]. Plasmonics , 2016, 11(5): 1369-1376.
陈超, 张玲.距离调控纳米多孔金表面增强荧光特性[J].上海理工大学学报, 2017, 39(1): 58-62.
CHEN CH, ZHANG L. Distance control surface-enhanced fluorescence properties of nanoporous gold[J]. Journal of University of Shanghai for Science and Technology , 2017, 39(1): 58-62. (in Chinese)
LI X, WANG Y, LUO J, AI S. Sensitive detection of adenosine triphosphate by exonuclease Ⅲ-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore[J]. Sensors & Actuators B: Chemical , 2016, 228: 509-514.
MA H J, LI A H, XU Y H, et al . Preparation of pH-responsive AgNPs/polymer nanohybrids with controllable metal-enhanced fluorescence behavior[J]. European Polymer Journal , 2015, 72: 212-221.
孟凡斌, 徐慧, 兰伟, 等.水溶液中金属增强荧光的研究进展[J].化学通报, 2015, 78(6): 489-496.
MENG F B, XU H, LAN W, et al . Progress in metal enhanced fluorescence in aqueous solution[J]. Chemistry , 2015, 78(6): 489-496. (in Chinese)
吕国伟, 沈红明, 程宇清, 等.局域表面等离激元增强荧光研究进展[J].科学通报, 2015, 60(33): 3169-3179.
LÜ G W, SHEN H M, CHENG Y Q, et al . Advances in localized surface plasmon enhanced fluorescence[J]. Chinese Science Bulletin , 2015, 60(33): 3169-3179. (in Chinese)
0
浏览量
17
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构