浏览全部资源
扫码关注微信
1.安徽理工大学 机械工程学院, 安徽 淮南 232001
2.安徽理工大学 矿山智能装备与技术安徽省重点实验室, 安徽 淮南 232001
[ "马天兵(1981-),男,安徽庐江人,博士,教授, 2002年、2005年于安徽理工大学分别获得学士、硕士学位,2014年于南京航空航天大学获得博士学位,现为安徽理工大学机电控制工程系主任,主要从事压电能量回收、振动主动控制方面的研究。E-mail:dfmtb@163.com" ]
[ "陈南南(1994-),男,安徽亳州人,硕士研究生,2017年于安徽理工大学获得学士学位,主要从事压电振动能量收集结构的研究。E-mail: 2998689815@qq.com" ]
收稿日期:2018-12-13,
录用日期:2019-2-4,
纸质出版日期:2019-09-15
移动端阅览
马天兵, 陈南南, 吴晓东, 等. Z型压电振动能量收集装置[J]. 光学 精密工程, 2019,27(9):1968-1980.
Tian-bing MA, Nan-nan CHEN, Xiao-dong WU, et al. Z-type piezoelectric vibration energy harvesting device[J]. Optics and precision engineering, 2019, 27(9): 1968-1980.
马天兵, 陈南南, 吴晓东, 等. Z型压电振动能量收集装置[J]. 光学 精密工程, 2019,27(9):1968-1980. DOI: 10.3788/OPE.20192709.1968.
Tian-bing MA, Nan-nan CHEN, Xiao-dong WU, et al. Z-type piezoelectric vibration energy harvesting device[J]. Optics and precision engineering, 2019, 27(9): 1968-1980. DOI: 10.3788/OPE.20192709.1968.
为解决压电振动能量收集结构难以同时满足宽频带、三维、高效采集等要求的问题,提出一种以Z型梁代替集中质量块的压电振动能量收集结构。通过Z型梁引入非线性质量,使收集器在低频范围内集中更多模态,拓宽采集频带。利用Z型梁结构的纵向和横向不稳定性实现收集器的三维度能量采集功能。分析了Z型梁在宽度增加后的动力学特性,探讨了压电片阵列排布的采集性能,并建立仿真模型和搭建实验平台,与螺旋形梁结构和经典悬臂梁质量块结构的动力学特性进行了对比。仿真及实验结果表明:当梁折叠层数为7层时,频率在50 Hz以内的模态数量达到了9个,在1~100 Hz间隔1 Hz的谐波激振下,Z型压电梁正向的采集电压-频率曲线峰值多达4个,且主要集中在0~40 Hz,最大开路电压达到16 V,大大拓宽了采集频带;横向和纵向的最大开路电压峰值均在10 V以上,横向和纵向的采集电压-频率曲线峰值数量均大于4个,实现了三维度能量采集,负载10 kΩ时最大输出功率达到了0.18 mW;在Z型梁宽度增加到100 mm时,在200 Hz范围内模态数大于30个,双贴片串联采集电压曲线峰值多达4个,最大电压达到了14 V,验证了Z型梁适用于压电片阵列排布。
In order to solve the problem that the piezoelectric vibration energy harvesting structure is difficult to meet the acquisition requirements of wide frequency band
3D and high efficiency at the same time
a piezoelectric vibration energy harvester structure with the concentrated mass replaced by Z-type beam was proposed. Nonlinear mass was introduced by the Z-type beam structure
which enabled more modal of the harvester to be concentrated in the low frequency range
increased the acquisition frequency band
and realized the 3D energy harvesting function of the harvester by the instability of the horizontal and longitudinal Z-type beam structure. The dynamic characteristics of the Z-type beam after increasing the width were analyzed
and the energy acquisition performance of the piezoelectric array was discussed. Models and experimental platforms were built for simulation and experimental verification. Then
the dynamic characteristics of the Z-type piezoelectric beam was compared with those of the spiral beam structure and classic cantilever beam mass structure. The simulation and experimental results show that when the beam has seven folded layers
the number of modes with frequency within 50 Hz can reach nine
and in the 1-100 Hz range and 1 Hz harmonic excitation
the peaks of the forward acquisition voltage-frequency curve reaches up to four and are mainly concentrated in the 0-40 Hz range. The maximum open circuit voltage is up to 16 V
greatly widening the acquisition frequency band. The maximum open circuit voltage peaks in both the horizontal and vertical directions are above 10 V
while the peaks of the horizontal and vertical acquisition voltage-frequency curves are greater than four
achieving 3D energy acquisition. The maximum output power reaches 0.18 mW when the load is 10 kΩ. When the width of the Z-type beam is increased to 100 mm
the number of modes is greater than 30 in the range of 200 Hz. The peak number of acquisition voltage curves of double patch in series is up to four. The maximum voltage reached 14 V
which proves that the Z-beam is suitable for the arrangement of the piezoelectric array.
TEKKALMAZ M, KORPEOGLU I. Distributed power-source-aware routing in wireless sensor networks[J]. Wireless Networks , 2016, 22(4): 1381-1399.
HU G, TSE K T, KWOK K C S, et al . Aerodynamic modification to a circular cylinder to enhance the piezoelectric wind energy harvesting[J] . Applied Physics Letters , 2016, 109(19): 193902.
任龙, 陈仁文, Stephen Burrow, 等.高体积优值系数振动能量采集器的设计与性能测试[J].振动与冲击, 2018, 37(10): 102-109.
REN L, CHEN R W, BURROW S, et al . Design and performance test of a high volumetric figure of merit electromagnetic vibration energy harvester[J]. Journal of Vibration and Shock , 2018, 37(10): 102-109. (in Chinese)
郭庆, 张金娅, 王岩, 等.小型低频电磁式振动能量采集器的制作及其特性研究[J].仪表技术与传感器, 2017(1):26-28.
GUO Q, ZHANG J Y, WANG Y, et al . Study on fabrication and properties for small low-frequency electromagnetic energy harvester[J]. Instrument Technique and Sensor , 2017(1): 26-28. (in Chinese)
李志宏, 王良, 徐圣, 等.压电电磁复合式振动能量采集器模型的研究[J].压电与声光, 2017, 39(4):525-530.
LI ZH H, WANG L, XU SH, et al . Study on the model of hybrid piezoelectric and electromagnetic vibration energy harvester[J]. Piezoelectrics & Acoustooptics , 2017, 39(4):525-530. (in Chinese)
阚君武, 张肖逸, 王淑云, 等.直激式压电风能捕获器的性能分析与实验[J].光学 精密工程, 2016, 24(5): 1087-1092.
KAN J W, ZHANG X Y, WANG S Y, et al . Performance analysis and test of blowing-type PZT wind energy harvester[J]. Opt. Precision Eng ., 2016, 24(5): 1087-1092.(in Chinese)
何青, 毛新华, 褚东亮.宽频激励下双稳态压电振动发电机供电能力分析[J].电机与控制学报, 2016, 20(7): 17-23.
HE Q, MAO X H, CHU D L. Power supply capability analysis of piezoelectric vibration generator with bistable under wide frequency excitation [J]. Electric Machines and Control , 2016, 20(7): 17-23.(in Chinese)
WONG V K, HO J H, CHAI A B. Performance of a piezoelectric energy harvester in actual rain[J]. Energy , 2017, 124: 364-371.
ROCHA J G, GONÇALVES L M, ROCHA P F, et al . Energy harvesting from piezoelectric materials fully integrated in footwear[J]. IEEE Transactions on Industrial Electronics , 2010, 57(3): 813-819.
樊康旗, 刘朝辉, 王连松, 等.从人体行走中收集能量的鞋上压电俘能器[J].光学 精密工程, 2017, 25(5): 1272-1280.
FAN K Q, LIU ZH H, WANG L S, et al . Shoe-mounted piezoelectric energy harvester for collecting energy from human walking[J]. Opt. Precision Eng ., 2017, 25(5): 1272-1280.(in Chinese)
杜小振, 张龙波, 于红.磁力调频压电电磁复合发电设计与实验[J].光学 精密工程, 2016, 24(11): 2753-2760.
DU X ZH, ZHANG L B, YU H. Design and experiment of piezoelectric electromagnetic hybrid broadband generator with magnetic force tuning[J]. Opt. Precision Eng ., 2016, 24(11): 2753-2760.(in Chinese)
HU H P, HU L, YANG J S, et al . A piezoelectric spring-mass system as a low-frequency energy harvester[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 2013, 60(4): 846-850.
LI S S, CROVETTO A, PENG Z T, et al . Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency[J]. Sensors and Actuators A: Physical , 2016, 247: 547-554.
LI C, HONG D, KWON K H, et al . A Multimode relayed piezoelectric cantilever for effective vibration energy harvesting[J]. Japanese Journal of Applied Physics , 2013, 52(5):202.
佘引, 温志渝, 赵兴强, 等. MEMS压电阵列振动能量收集器[J].传感技术学报, 2014, 27(8): 1033-1037.
SHE Y, WEN ZH Y, ZHAO X Q, et al . The MEMS vibration energy harvester with piezoelectric array[J]. Chinese Journal of Sensors and Actuators , 2014, 27(8): 1033-1037.(in Chinese)
刘祥建, 陈仁文, 侯志伟.蒲公英状压电振动能量收集装置宽频带设计[J].光学 精密工程, 2014, 22(7): 1850-1856.
LIU X J, CHEN R W, HOU ZH W. Wide-band design of dandelion-shape piezoelectric vibration energy harvester[J]. Opt. Precision Eng. , 2014, 22(7): 1850-1856.(in Chinese)
侯志伟, 陈仁文, 刘祥建.多方向压电振动能量收集装置及其优化设计[J].振动与冲击, 2012, 31(16):33-37.
HOU ZH W, CHEN R W, LIU X J. Optimization design of multi-direction piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock , 2012, 31(16): 33-37.(in Chinese)
尹慧慧, 季宏丽, 裘进浩, 等.二维低频多模态振动能量回收结构的研究[J].电子元件与材料, 2014, 33(8): 77-82.
YIN H H, JI H L, QIU J H, et al . Two dimensional multimodal low frequency energy harvester[J]. Electronic Components and Materials , 2014, 33(8): 77-82.(in Chinese)
阚君武, 唐可洪, 王淑云, 等.压电悬臂梁发电装置的建模与仿真分析[J].光学 精密工程, 2008, 16(1): 71-75.
KAN J W, TANG K H, WANG SH Y, et al . Modeling and simulation of piezoelectric cantilever generators[J]. Opt. Precision Eng. , 2008, 16(1): 71-75.(in Chinese)
0
浏览量
9
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构