浏览全部资源
扫码关注微信
1.中国气象科学研究院 灾害天气国家重点实验室,北京 100081
2.国家卫星气象中心 中国遥感卫星辐射测量与定标重点开放实验室,北京 100081
[ "陆其峰(1975-),男,新疆昌吉人,研究员,2006年于南京信息工程大学获得博士学位,主要从事星载遥感器辐射定标、卫星仪器观测仿真和资料同化应用方面的研究。E-mail:luqf@cma.gov.cn" ]
[ "漆成莉(1979-),女,湖南株洲人,副研究员,2001年于南京信息工程大学获得学士学位,2004年于中国气象科学研究院获得硕士学位,主要从事红外分光仪器、红外高光谱仪器地面预处理系统开发,红外辐射定标与验证的研究。E-mail: qicl@cma.gov.cn" ]
收稿日期:2019-03-22,
录用日期:2019-5-21,
纸质出版日期:2019-10-15
移动端阅览
陆其峰, 周方, 漆成莉, 等. FY-3D星红外高光谱大气探测仪的在轨光谱精度评估[J]. 光学 精密工程, 2019,27(10):2105-2115.
Qi-feng LU, Fang ZHOU, Cheng-li QI, et al. Spectral performance evaluation of high-spectral resolution infrared atmospheric sounder onboard FY-3D[J]. Optics and precision engineering, 2019, 27(10): 2105-2115.
陆其峰, 周方, 漆成莉, 等. FY-3D星红外高光谱大气探测仪的在轨光谱精度评估[J]. 光学 精密工程, 2019,27(10):2105-2115. DOI: 10.3788/OPE.20192710.2105.
Qi-feng LU, Fang ZHOU, Cheng-li QI, et al. Spectral performance evaluation of high-spectral resolution infrared atmospheric sounder onboard FY-3D[J]. Optics and precision engineering, 2019, 27(10): 2105-2115. DOI: 10.3788/OPE.20192710.2105.
风云三号D星(FY-3D)于2017年11月15日成功发射,搭载了国内第一颗自主研制的极轨红外高光谱大气探测仪(High-spectral Resolution Infrared Atmospheric Sounder,HIRAS),数据将在数值天气预报、大气温/湿廓线反演、大气成分探测等方面得到广泛应用。为满足高精度的探测能力需求,HIRAS的光谱分辨率达到0.625 cm
-1
,辐射定标精度要求达到1.0 K,光谱定标精度要求达到10×10
-6
,均为目前国内星载红外仪器最高精度指标。由于光谱频率的精确性会直接影响辐射精度,红外干涉仪器在数据应用之前必须进行光谱定标精度的精确评估和监测。以晴空视场下的高精度逐线辐射传输模拟光谱作为参考基准,利用互相关法计算光谱频率偏差,对发射后的HIRAS在轨数据的光谱定标精度进行了全面评估和验证研究。HIRAS在长波、中波1和中波2的光谱精度达到3×10
-6
,其中长波和中波1光谱偏差标准差小于2×10
-6
,远优于仪器设计指标要求;长期的光谱精度稳定性显示HIRAS中波1和中波2的光谱定标精度较稳定,在半年时间内频率变化小于5×10
-6
,长波波段在半年的时间内有往负频率偏差变化的趋势,变化量约为7×10
-6
,需要进行持续监测。HIRAS在轨光谱精度可满足后端产品反演和同化用户的使用需求。
Fengyun-3D (FY-3D) was successfully launched on November 15
2017. For the first time
it was equipped with the High-spectral Resolution Infrared Atmospheric Sounder (HIRAS)
which was developed and manufactured entirely by the Shanghai Institute of Technical Physics (SITP)
China. HIRAS measurements were mainly used for numerical weather forecast and obtaining temperature
moisture
and green-house gases profiles. To meet the high accuracy of the sounding ability
the spectral resolution of HIRAS is required to reach 0.625 cm
-1
the radiation accuracy is required to reach 0.5 K
and the spectral frequency accuracy is required to reach 10×10
-6
. An infrared (IR) interferometer is needed to accurately evaluate and monitor the spectral frequency accuracy before data application because the accuracy of the spectral frequency will directly affect the precision of radiation measurements. In this study
spectral shifts were derived using the cross-correlation method
in which the accurate line by line radiative transfer model simulation spectra under clear conditions were used as reference
and the spectral performance and frequency accuracy of HIRAS in-orbit data after launch were comprehensively evaluated and verified. The results show that the HIRAS spectral calibration accuracy is greater than 3×10
-6
in long wave
middle wave1 and middle wave2 bands and the spectral bias standards of long wave (LW) and middle wave 1 (MW1) bands are higher than 2×10
-6
which are better than the requirements. The spectral accuracy of HIRAS in the past six months was stable for LW and MW1 bands and the spectral frequency variations were in range of 5×10
-6
. For LW band
a negative bias trend was observed that reaches approximately 7×10
-6
this would require consistent monitoring in the future. The results of this study indicate that the HIRAS data on-orbit spectral accuracy can satisfy the demands of back-end retrieval and assimilation users.
漆成莉, 徐寒列, 胡秀清, 等.风云三号气象卫星红外分光计在轨交叉定标精度监测系统[J].红外与毫米波学报, 2016(3): 341-349.
QI CH L, XU H L, HU X Q, et al .. Platform for monitoring accuracy of on orbit cross calibration: Infrared Atmospheric Sounder onboard FY-3 satellite[J]. Infrared Millim. Waves , 2016(3): 341-349.(in Chinese)
郑玉权.超光谱成像仪的精细光谱定标[J].光学 精密工程, 2010(11): 2347-2354.
ZHENG Y Q. Precise spectral calibration for hyperspectral imager[J]. Opt. Precision Eng. , 2010(11): 2347-2354. (in Chinese)
张磊, 杨敏珠, 邹曜璞, 等.红外傅里叶光谱仪的仪器线形函数及工程应用[J].光学 精密工程, 2015(12): 3322-3328.
ZHANG L, YANG MZH, ZOU Y P, et al .. Instrument line shape of infrared Fourier transform spectrometer and its engineer applications[J]. Opt. Precision Eng. , 2015, 23(12): 3322-3328. (in Chinese)
董超华, 李俊, 张鹏, 等.卫星高光谱红外大气遥感原理和应用[M].北京:科学出版社, 2013.
DONG CH H, LI J, ZHANG P, et al .. Methodology and Application of Satellite High Spectral Infrared Atmospheric Sounder(Ⅰ) [M]. Beijing: Science Press, 2013. (in Chinese)
蔺超, 李诚良, 王龙, 等.碳卫星高光谱CO 2 探测仪发射前光谱定标[J].光学 精密工程, 2017, 25(8): 2064-2075.
LIN CH, LI CH L, WANG L, et al .. Preflight spectral calibration of hyperspectral carbon dioxide spectrometer of TanSat[J]. Opt. Precision Eng. , 2017, 25(8): 2064-2075. (in Chinese)
GENEST J, TREMBLAY P. Instrument line shape of fourier transform spectrometers: analytic solutions for nonuniformly illuminated off-axis detectors[J]. Appl Opt., 1999, 38(25): 5438-5446.
洪津, 王征云, 胡亚东, 等.星载红外探测器组件寿命试验研究及系统设计[J].光学 精密工程, 2018(5): 1148-1155.
HONG J, WANG ZH Y, HU Y D, et al .. Research of life test and design of system for satellite-borne infrared detector assembly[J]. Opt. Precision Eng. , 2018, 26(5): 1148-1155. (in Chinese)
STROW L L MOTTELER H, TOBIN D, et al .. Spectral calibration and validation of the cross-track infrared sounder on the suomi NPP satellite[J]. Journal of Geophysical Research.: Atmospheres , 2013, 118(22): 12, 412-486, 496.
CHEN Y, HAN Y, WENG F. Detection of earth-rotation doppler shift from suomi national polar-orbiting partnership cross-track infrared sounder[J]. Applied Optics , 2013, 52(25): 6250.
MCNALLY A P, WATTS P D. A cloud detection algorithm for high-spectral-resolution infrared sounders[J]. Q.J.R.Meteorol.Soc., 2003, 129(595):3411-3423.
SHEPHARD M W, CLOUGH S A, PAYNE V H, et al .. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx[J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7397-7417.
漆成莉, 顾明剑, 胡秀清, 等.风云三号卫星红外高光谱探测技术及潜在应用[J].气象科技进展, 2016, 6(1): 88-93.
QI CH, GU M J, HU X Q, et al .. FY-3 satellite infrared high spectral sounding technique and potential application[J]. Advances in Met S & T , 2016, 6(1): 88-93. (in Chinese)
CHEN Y, HAN Y, WENG F. Characterization of long-term stability of suomi NPP cross-track infrared sounder spectral calibration[J]. IEEE Trans. Geosci. Remote Sensing, 2017, 55(2): 1147-1159.
官莉, 王振会.用空间匹配的MODIS云产品客观确定AIRS云检测[J].气象科学, 2007(5): 516-521.
GUAN L, WANG ZH H. Objective determination of AIRS cloud mask using co-located MODIS cloud mask[J]. Scientia Meteorologica Sinica, 2007, 27(5): 516-521. (in Chinese)
王丹凤, 张记龙, 王志斌, 等.基于MODIS云产品的AIRS像素云检测[J].国土资源遥感, 2013, 25(1): 13-17.
WANG D G, ZHANG J L, WANG ZH B, et al .. AIRS pixel cloud detection using MODIS cloud products[J]. Remote sensing for land & resources, 2013, 25(1): 13-17.(in Chinese)
WANG L, TREMBLAY D, ZHANG B, et al .. Fast and accurate collocation of the visible infrared imaging radiometer suite measurements with cross-track infrared sounder[J]. Remote Sensing , 2016, 8(1): 76.
翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社, 2012.
WENG SH F. Fourier Transfer Infrared Spectra Analysis [M]. Beijing: Chemistry Industry Press, 2012.(in Chinese)
CHEN Y, HAN Y, VAN DELST P, et al .. Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the community radiative transfer model using IASI data[J]. J. Atmos. Oceanic Technol, 2013, 30(9): 2152-2160.
0
浏览量
28
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构