浏览全部资源
扫码关注微信
1.长春理工大学 电子信息工程学院,吉林 长春 130022
2.吉林农业科技学院 电气与信息工程学院,吉林 吉林 132101
[ "郑亮(1982-),男,吉林省吉林市人,博士研究生,讲师,2006年、2010年于长春理工大学分别获得学士、硕士学位,主要从事机器人控制学、水下机器人建模与仿真系统的研究。E-mail:arm9linux@163.com" ]
收稿日期:2019-06-06,
录用日期:2019-7-19,
纸质出版日期:2019-10-25
移动端阅览
郑亮, 马宇科. 非线性反馈和二次型调节器在两栖机器人中的应用[J]. 光学 精密工程, 2019,27(10):2199-2206.
Liang ZHENG, Yu-ke MA. Application of nonlinear feedback and quadratic regulators in amphibious robots[J]. Optics and precision engineering, 2019, 27(10): 2199-2206.
郑亮, 马宇科. 非线性反馈和二次型调节器在两栖机器人中的应用[J]. 光学 精密工程, 2019,27(10):2199-2206. DOI: 10.3788/OPE.20192710.2199.
Liang ZHENG, Yu-ke MA. Application of nonlinear feedback and quadratic regulators in amphibious robots[J]. Optics and precision engineering, 2019, 27(10): 2199-2206. DOI: 10.3788/OPE.20192710.2199.
球形两栖机器人具有对称的结构和多自由度的运动状态特性,在环境适应性和运动稳定性上具有优势。本文介绍一种可以用于深海水下探测与救援的新型水陆两栖机器人控制系统的结构和建模方法,根据机器人的运动控制模式,推导出具有6个自由度的动态数学模型,并在动态模型的基础上,建立并评估了两种控制模型。第一种是基于二次型调节器(LQR)的控制器模型,第二种是基于非线性状态反馈(FL)的控制器模型。最后对两种控制模型进行水下实验验证及评估,从而证明两种控制器的有效性和优劣性。实验表明:非线性状态反馈系统在响应时间(LQR=67.5 s,FL=46.5 s)方面都优于有限时域LQR控制器,而LQR控制器在上升时间(LQR=24.5 s,FL=39.8 s)方面更加具有优势。
Amphibious Spherical Robots (ASRs) possess high environmental adaptability and high motion stability owing to their symmetrical structural characteristics and multiple degrees of freedom in motion. This paper proposes a novel ASR control system that can be used in underwater detection and rescue and discusses its structure and modeling method. Depending on the motion control model of the robot
it can enable a dynamics system with 6 Ddegrees of Freedom (DOF). The mathematical model
based on the dynamic model
establishes and evaluates two versions of the control system. One is a controller model based on a Linear Quadratic Regulator (LQR) and the other is a motion equation of a control system based on nonlinear state Feedback Linearization (FL). Underwater control experiments were carried out on both control systems to prove their effectiveness and advantages. The experiments showed that the nonlinear state feedback system is superior to the finite time domain LQR controller in terms of corresponding durations of operation (LQR = 67.5 s
FL = 46.5 s) and fall times (LQR = 24.5 s
FL = 39.8 s).
袁飞.线性二次型球式滚动机器人运动稳定性研究与测试分析[J].中国工程机械学报, 2018, 16(5): 462-466, 470.
YUAN F. Kinematic stability and test analysis of ball rolling robot on linear quadratic regulator [J]. Chinese Journal of Construction Machinery , 2018, 16(5): 462-466, 470.(in Chinese)
郭书祥, 孙珊, 郭健.新型仿生水下子母机器人系统设计[J].控制与决策, 2019, 34(5): 1004-1010.
GUO SH X, SUN SH, GUO J. Design of a novel biomimetic underwater mother-son robot system [J]. Control and Decision , 2019, 34(5): 1004-1010.(in Chinese)
李艳生, 杨美美, 孙汉旭, 等.一种摆式球形机器人水中俯仰运动的稳定控制方法[J].振动与冲击, 2018, 37(13): 149-154, 189.
LI Y SH, YANG M M, SUN H X, et al .. A stability control method for pitching motion in water of a pendulum type spherical robot [J]. Journal of Vibration and Shock , 2018, 37(13): 149-154, 189.(in Chinese)
于涛, 孙汉旭, 赵伟, 等.一种球形滚动机器人的路径跟踪控制器设计[J].计算机测量与控制, 2019, 27(3): 91-96.
YU T, SUN H X, ZHAO W, et al .. Design of a path following controller for a spherical rolling robot [J]. Computer Measurement & Control , 2019, 27(3): 91-96.(in Chinese)
杨红彪.水下球形机器人的关键技术研究[D].哈尔滨: 哈尔滨工程大学, 2018.
YANG H B. Research on the Key Technologies of the Underwater Spherical Robot [D]. Harbin: Harbin Engineering University, 2018.(in Chinese)
ZHENG L, GUO S X, GU S X. The communication and stability evaluation of amphibious spherical robots [J]. Microsystem Technologies , 2019, 25(7): 2625-2636.
ZHENG L, GUO S X, GU S X. Structure improvement and stability for an amphibious spherical robot [C]// 2018 IEEE International Conference on Mechatronics and Automation (ICMA) , August 5-8, 2018. Changchun. New York, USA: IEEE, 2018.
GU S X, GUO S X. Performance evaluation of a novel propulsion system for the spherical underwater robot (SURIII) [J]. Applied Sciences , 2017, 7(11): 1196.
LI M X, GUO S X, GUO J, et al .. Development of a biomimetic underwater microrobot for a father-son robot system [J]. Microsystem Technologies , 2017, 23(4): 849-861.
郭立新, 陈从根, 赵琳.座椅悬架和汽车悬架的集成变增益LQR控制[J].东北大学学报:自然科学版, 2019, 40(3): 398-402, 408.
GUO L X, CHEN C G, ZHAO L. Integratedvariable gain LQR control of seat suspension and automobile suspension [J]. Journal of Northeastern University: Natural Science , 2019, 40(3): 398-402, 408.(in Chinese)
蔡春山, 王佐勋.基于LQR的两轮机器人的平衡控制[J].齐鲁工业大学学报, 2018, 32(1): 55-60.
CAI CH SH, WANG Z X. Balance control of two-wheeled robot based on LQR [J]. Journal of Qilu University of Technology , 2018, 32(1): 55-60.(in Chinese)
徐振邦, 赵智远, 贺帅, 等.机器人工作空间求解的蒙特卡洛法改进和体积求取[J].光学 精密工程, 2018, 26(11): 2703-2713.
XU ZH B, ZHAO ZH Y, HE SH, et al .. Improvement of Monte Carlo method for robot workspace solution and volume calculation [J]. Opt. Precision Eng. , 2018, 26(11): 2703-2713.(in Chinese)
党选举, 王凯利, 姜辉, 等.工业机器人谐波减速器迟滞特性的神经网络建模[J].光学 精密工程, 2019, 27(3): 694-701.
DANG X J, WANG K L, JIANG H, et al .. Neural network modeling of hysteresis for harmonic drive in industrial robots [J]. Opt. Precision Eng. , 2019, 27(3): 694-701.(in Chinese)
季超, 桑胜波, 张强, 等.基于纳米材料的柔性应力传感器研究进展[J].化工新型材料, 2018, 46(12): 1-5.
JI CH, SANG SH B, ZHANG Q, et al .. Research progress of flexible strain sensor based on nanomaterial [J]. New Chemical Materials , 2018, 46(12): 1-5.(in Chinese)
曹天扬, 蔡浩原, 方东明, 等.结合图像内容匹配的机器人视觉导航定位与全局地图构建系统[J].光学 精密工程, 2017, 25(8): 2221-2232.
CAO T Y, CAI H Y, FANG D M, et al .. Robot vision system for keyframe global map establishment and robot localization based on graphic content matching [J]. Opt. Precision Eng. , 2017, 25(8): 2221-2232.(in Chinese)
胡瑞钦, 隆昌宇, 张立建.视觉与力觉结合的卫星部件机器人装配[J].光学 精密工程, 2018, 26(10): 2504-2515.
HU R Q, LONG CH Y, ZHANG L J. Robotic assembly technology for satellite components based on visual and force information [J]. Opt. Precision Eng. , 2018, 26(10): 2504-2515.(in Chinese)
0
浏览量
87
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构