浏览全部资源
扫码关注微信
1.中国科学院 空间应用工程与技术中心 中国科学院空间应用重点实验室,北京 100094
2.中国科学院大学,北京 100049
3.中国科学院 上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室,上海 200050
4.北京国科环宇科技股份有限公司,北京 100080
[ "陈东阳(1995-),男,安徽宿州人,硕士研究生,2017年于北京科技大学获得学士学位,主要从事高速视觉及自动控制方面的研究。E-mail:13051506610@163.com" ]
董文博(1980-),男,河北人,博士,副研究员,2003年、2006年于清华大学分别获得学士、硕士学位,2010年于中科院自动化所获得博士学位,研究方向为空间电子学和控制技术、空间实验载荷支持,计算机应用等。E-mail: wbdong@csu.ac.cn DONG Wen-bo, E-mail:wbdong@csu.ac.cn
余建定(1955-),男,研究员,1978年毕业于上海交通大学, 1996年于日本东京工业大学获得博士学位,主要从事无容器技术与新材料等的研究。E-mail:yujianding@mail.sic.ac.cn YU Jian-ding, E-mail: yujianding@mail.sic.ac.cn
收稿日期:2019-06-20,
录用日期:2019-8-21,
纸质出版日期:2019-11-15
移动端阅览
陈东阳, 郭清远, 董文博, 等. 基于高速视觉的静电悬浮控制系统[J]. 光学 精密工程, 2019,27(11):2343-2353.
Dong-yang CHEN, Qing-yuan GUO, Wen-bo DONG, et al. Control system of electrostatic levitation based on high-speed vision[J]. Optics and precision engineering, 2019, 27(11): 2343-2353.
陈东阳, 郭清远, 董文博, 等. 基于高速视觉的静电悬浮控制系统[J]. 光学 精密工程, 2019,27(11):2343-2353. DOI: 10.3788/OPE.20192711.2343.
Dong-yang CHEN, Qing-yuan GUO, Wen-bo DONG, et al. Control system of electrostatic levitation based on high-speed vision[J]. Optics and precision engineering, 2019, 27(11): 2343-2353. DOI: 10.3788/OPE.20192711.2343.
静电悬浮是一种无接触式研究材料深过冷等特性的重要方法之一,为此设计了一套地面静电悬浮控制系统。基于双GPU建立图像采集和位置解算系统,使用实时检测算法完成对目标的实时检测。对样品带电以及动力学建模,通过开环-赋初值PID的控制策略,实现材料的融化悬浮等实验,省去了深紫外灯进行电荷补充的装置。实验证明,图像处理速度在304×304像素达到了700 frame/s,同时规则球体控制精度约在±0.02 mm以内。模型仿真控制结果和实际实验控制结果的相关参数基本一致。加入900 V(该电压引起材料的加速度约为1.274 m/s
2
)的人工扰动下,静电悬浮约340 ms即可稳定,证明了基于高速视觉的静电悬浮控制系统的可行性与可靠性和静电悬浮动力学建模的准确性。
Electrostatic levitation is one of the most important methods used to study the properties of materials without having to collide them against the wall of a chamber. A dynamic
ground electrostatic levitation control system model is designed and built using two Graphics Processing Units (GPUs) to process the image sequence and calculate the position of the material. In addition
a real-time detection algorithm is proposed for quick real-time visual detection of the targets. The melting experiment of the material is realized with an open-loop and Proportional-Integral-Derivative (PID) controller. This eliminates the charge supplement device of the deep ultraviolet lamp
and an image processing speed of 700 frames per second at the resolution of 304 pixels × 304 pixels and control precision of approximately ±0.02 mm are achieved. Furthermore
the relevant parameters concerning the control effects between the simulation model and experiments are consistent. For a disturbance of 900 V
which causes the acceleration of the material to reach approximately 1.274 m/s
2
the system can stabilize in 340 ms. Therefore
the feasibility and reliability of an electrostatic levitation control system based on high-speed vision and the accuracy of its dynamic model were proved.
王伟, 张明辉, 汪超越, 等.无容器凝固技术与新材料研究[J].中国材料进展, 2017(12):902-911.
WANG W, ZHANG M H, WANG CH Y, et al .. Novel materials research using containerless processing[J]. Material China , 2017(12):902-911.(in Chinese)
LIU R P, VOLKMANN T, HERLACH D M. Undercooling and solidification of Si by electromagnetic levitation[J]. Acta Materialia , 2001, 49(3): 439-444.
XIE W J, CAO C D, LÜ Y J, et al .. Levitation of iridium and liquid mercury by ultrasound[J]. Physical Review Letters, 2002, 89(10): 104304.
NAKAMURA T, AWA Y J, SHIMOJI H, et al .. Control system of electrostatic levitation furnace[J]. Acta Astronautica , 2002, 50(10): 609-614.
HYPERS R W, ROGERS J R. A review of electrostatic levitation for materials research[J]. High Temperature Materials and Processes , 2008, 27(6):461-474.
MEISTER T, WERNER H, LOHOEFER G, et al .. Gain-scheduled control of an electrostatic levitator[J]. Control Engineering Practice , 2003, 11(2): 117-128.
LEE G W, JEON S, PARK C, et al .. Crystal-liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: Hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy[J]. The Journal of Chemical Thermodynamics , 2013, 63: 1-6.
HU L, WANG H P, XIE W J, et al .. Electrostatic levitation under the single-axis feedback control condition[J]. Science China Physics, Mechanics and Astronomy , 2010, 53(8): 1438-1444.
WANG F L, DAI B, LIU X F, et al .. Containerless heating process of a deeply undercooled metal droplet by electrostatic levitation[J]. Chinese Physics Letters , 2015, 32(11): 114101.
王耀东, 朱力强, 余祖俊, 等.用于机械系统瞬时目标的双视角高速视觉检测系统[J].光学 精密工程, 2017(10):190-200.
WANG Y D, ZHU L Q, YU Z J, et al .. Two-view high speed vision system for instant object detection in mechanical system[J]. Opt. Precision Eng ., 2017(10):190-200.(in Chinese)
宋薇, 宋志杰, 章亚男, 等.基于3-CCD显微视觉的高精度靶位姿控制[J].光学 精密工程, 2018(7):1794-1801.
SONG W, SONG ZH J, ZHANG Y N, et al .. High-precision target pose adjustment based on 3-CCD microscope vision system[J]. Opt. Precision Eng. , 2018(7):1794-1801. (in Chinese)
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2000, 22(11): 1330-1334.
COLVER G M. Dynamic and stationary charging of heavy metallic and dielectric particles against a conducting wall in the presence of a dc applied electric field[J]. Journal of Applied Physics , 1976, 47(11): 4839-4849.
0
浏览量
112
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构