浏览全部资源
扫码关注微信
1.航天器在轨故障诊断与维修重点实验室,陕西 西安 710043
2.宇航动力学国家重点实验室,陕西 西安 710043
[ "李强(1976-),男,湖北荆州人,硕士,高级工程师,1998年于武汉测绘科技大学获得学士学位,2007年于华中科技大学获得硕士学位,主要从事卫星操控与在轨管理。E-mail:buffalo126126@126.com" ]
收稿日期:2019-06-24,
录用日期:2019-8-14,
纸质出版日期:2019-11-15
移动端阅览
李强, 张宝辉, 李会锋, 等. 低轨卫星肼推进剂泄漏估计[J]. 光学 精密工程, 2019,27(11):2354-2364.
Qiang LI, Bao-hui ZHANG, Hui-feng LI, et al. Estimation of hydrazine propellant leakage for LEO satellite[J]. Optics and precision engineering, 2019, 27(11): 2354-2364.
李强, 张宝辉, 李会锋, 等. 低轨卫星肼推进剂泄漏估计[J]. 光学 精密工程, 2019,27(11):2354-2364. DOI: 10.3788/OPE.20192711.2354.
Qiang LI, Bao-hui ZHANG, Hui-feng LI, et al. Estimation of hydrazine propellant leakage for LEO satellite[J]. Optics and precision engineering, 2019, 27(11): 2354-2364. DOI: 10.3788/OPE.20192711.2354.
针对空间环境对低轨卫星推进系统的影响,以某卫星超寿命运行下的肼推进剂泄漏为例,在讨论卫星轨道倾角、光照角、降交点地方时等参数漂移的基础上,详细分析卫星无姿态控制下的俯仰角速度遥测参数加速变化与干扰力矩来源,随后根据气态方程建立模型,估计质量泄漏率、气体泄漏率、干扰力矩、比冲等参数,最后利用姿态角速度、储箱温度与压力等遥测数据进行检验。结果表明,干扰力矩具有分段线性变化特征,极大值约为3.4 μN·m,极小值约0.9 μN·m;肼推进剂的质量泄漏率在7.4~13.4 μg·s
-1
之间变化,初始值相对较大,随后下降并逐渐稳定在8.0 μg·s
-1
附近;对应的气体泄漏率在0.56~1.18 Pa·L·s
-1
之间变化,稳定值约为0.60 Pa·L·s
-1
;比冲在121~249 m·s
-1
之间,稳定值接近200 m·s
-1
。温度对漏气比冲的影响较为明显,温度高则比冲相对较大,反之亦然;温度对干扰力矩也有相应影响,但对质量泄漏率的影响并不明显。泄漏由密封材料性能下降所致,温度对材料老化的影响是其中的关键因素,但肼推进剂的质量泄漏率相对较小,推进系统的产品质量相对较优,能够满足长寿命低轨卫星应用需求。
The propulsion system of a satellite is influenced by the in-flight environment in space. Consequently
to investigate the leakage of propellant from a monopropellant hydrazine propulsion system
a Low Earth Orbit (LEO) satellite is sampled over its devised life. Details regarding orbit shifting
inclination
solar shining angle
and Local Time of Descending Node (LTDN) are discussed. The cause of leakage is attributed to acceleration in the pitch velocity of the satellite when it has no attitude control. A model is presented using the gaseous equation to estimate the parameters of leakage
including mass and gas leakage rates
disturbing torque
and specific impulse. From validation using satellite telemetry data
such as angular velocity and the temperature and pressure of the propellant tank
the estimation results show that the disturbing torque is periodically linear
with maximum and minimum values of approximately 3.4 μN·m and 0.9 μN·m
respectively. Furthermore
the mass leakage rate of the hydrazine propellant
which varies between 7.4 μg·s
-1
and 13.4 μg·s
-1
is originally at a high level and then decreases gradually to a relatively stable value of approximately 8.0 μg·s
-1
. The gas leakage rate varies from 0.56 Pa·L·s
-1
to 1.18 Pa·L·s
-1
stabilizing at 0.60 Pa·L·s
-1
and the specific impulse varies between 121 m·s
-1
and 249 m·s
-1
finally closing at 200 m·s
-1
. The temperate of the environment has a relatively stronger influence on the specific impulse and disturbing torque
but not on the mass and gas leakage rates. The specific impulse increases with an increase in the temperature
and vice versa. The leakage is possibly caused by the degradation of the elastomeric seal
mainly due to the ageing of the material
which in turn stems from the varying thermal environment. With a low mass leakage rate
the propulsion system is relatively more reliable and life-sustaining in LEO satellites. It is possible to prolong the dump period of the momentum by avoiding the leakage of the hydrazine propellant
if the environmental temperature is decreased.
SKUHERSKY M, GO T, KIRK D R, et al .. Comparison of propellant settling approaches for on-orbit propellant depots during propellant transfer maneuvers[C]. AIAA Scitech 2019 Forum , San Diego , California . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2019 AIAA 2019-1371: 1-16.
GAJJAR P, MALHOTRA V. Advanced upper stage energetic propellants[C].2018 IEEE Aerospace Conference , March 3-10, 2018. Big Sky , MT . New York , USA : IEEE , 2018: 1-12.
BARBER T J. Final cassini propulsion system in-flight characterization[C].2018 Joint Propulsion Conference , Cincinnati , Ohio . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2018, AIAA 2018-4546: 1-81. https://www.researchgate.net/publication/242375219_Final_Galileo_Propulsion_System_in-flight_characterization
LEVERONE F, CERVONE A, GILL E. Cost analysis of solar thermal propulsion systems for microsatellite applications[J]. Acta Astronautica , 2019, 155: 90-110.
HOPKINS J R, MICCI M M, BILEN S G, et al .. Direct thrust measurements of an 8-GHz microwave electrothermal thruster[J]. IEEE Transactions on Plasma Science , 2018, 46(6): 2009-2015.
VAIRAMANI M, DURAISAMY V V, KULKARNI M D, et al .. Stability analysis of a novel on-orbit propellant storage and transfer system[C]. 2018 Space Flight Mechanics Meeting , Kissimmee , Florida . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2018 AIAA 2018-0210: 1-15.
GREGORY T C, GRAHAM K W, MARCOS R E, et al .. Restore-L propellant transfer subsystem progress within SSPD[C]. AIAA Propulsion and Energy Forum , Cincinnati , Ohio , 2018, AIAA 2018-4942: 1-17.
CONOMOS H A, ALONGI C G, MOORE J, et al .. Development of 10 inch diameter titanium rolling metal diaphragm tank for green propellant[C].53 rd AIAA / SAE / ASEE Joint Propulsion Conference , Atlanta , GA . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2017-4915: 1-10.
NAUMANN K W, PINTO P C. Green, controllable, safe, affordable and mature gelled propellant rocket motor technology for space and sub-orbital launchers[C]. 2018 Joint Propulsion Conference , Cincinnati , Ohio . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2018-4854: 1-13.
BOURDELLE A, BURLION L, BIANNIC J M, et al .. Correction: towards new controller design oriented models of propellant sloshing in observation spacecraft[C]. AIAA Scitech 2019 Forum , San Diego , California . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2019-0115: 1-12.
HARI M, SARIGUL-KLIJN N. Predicting sloshing motion in flexible propellant tanks using three-dimensional computational simulation and experimental validation[C]. AIAA Scitech 2019 Forum , San Diego , California . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2019-0204: 1-10.
OTTANDER J A, HALL R A, POWERS J F. Practical methodology for the inclusion of nonlinear slosh damping in the stability analysis of liquid-propelled space vehicles[C].2018 AIAA Guidance , Navigation , and Control Conference , Kissimmee , Florida . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2018-2097: 1-13.
DONO A, PLICE L, MUETING J, et al .. Propulsion trade studies for spacecraft swarm mission design[C].2018 IEEE Aerospace Conference , March 3-10, 2018. Big Sky , MT . New York , USA : IEEE , 2018: 1-12.
XAPSOS M. A brief history of space climatology: from the big bang to the present[J]. IEEE Transactions on Nuclear Science , 2019, 66(1): 17-37.
GRANT B, LUKE S. A new approach to radiation tolerance for high-orbit and interplanetary smallsat missions[C]. 32 nd Annual AIAA / USU Conference on Small Satellites , Logan , Utah , 2018, SSC18-WKV-05: 1-12.
徐福祥.用地球磁场和重力场成功挽救风云一号(B)卫星的控制技术[J].宇航学报, 2001, 22(2):1-11, 17.
XU F X. Technique of successful rescue of FY-1B meterological satellite by using the geomagnetic field and the gravitational field[J]. Journal of Astronautics , 2001, 22(2): 1-11, 17. (in Chinese)
彭仁军, 马雪阳, 郑科宇, 等.一颗低轨道卫星在轨故障抢修与恢复[J].航天器工程, 2008, 17(1):24-29.
PENG R J, MA X Y, ZHENG K Y, et al .. On-orbit fault repair and recovery of a low orbit satellite[J]. Spacecraft Engineering, 2008, 17(1): 24-29. (in Chinese)
SCHNEIDER P, ENDICTER J, WORK K, et al .. GOES-12 B-string thruster leak - anomaly response, recovery, and maintenance[C]. SpaceOps 2010 Conference , Huntsville , Alabama . Reston , Virigina : American Institute of Aeronautics and Astronautics , 2010-2140: 1-11. https://www.researchgate.net/publication/268579799_GOES-12_B-String_Thruster_Leak_-_Anomaly_Response_Recovery_and_Maintenance
VAREHA A. The ISS 2B PVTCS ammonia leak: an operational history[C]. SpaceOps 2014 Conference , Pasadena , CA . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2014-1664: 1-11.
CHRISTIAN B, FLAVIO M, MILAN K, et al .. Propellant gauging experience with meteosat second generation S/C fleet[C]. Space Ops . 2018 Conference , Marseille , France , 2018, AIAA 2018-2319: 1-11.
CARLTON A, MORGAN R, LOHMEYER W, et al .. Telemetry fault-detection algorithms: applications for spacecraft monitoring and space environment sensing[J]. Journal of Aerospace Information Systems , 2018, 15(5): 239-252.
MVLLER S, GERNDT A, NOLL T. Synthesizing failure detection, isolation, and recovery strategies from nondeterministic dynamic fault trees[J]. Journal of Aerospace Information Systems , 2019, 16(2): 52-60.
BUSSY-VIRAT C D, RIDLEY A J, GETCHIUS J W. Effects of uncertainties in the atmospheric density on the probability of collision between space objects[J]. Space Weather , 2018, 16(5): 519-537.
HEJDUK M D, SNOW D E. The effect of neutral density estimation errors on satellite conjunction serious event rates[J]. Space Weather , 2018, 16(7): 849-869.
LIM J W M, HUANG S Y, SUN Y F, et al .. Precise calibration of propellant flow and forces in specialized electric propulsion test system[J]. IEEE Transactions on Plasma Science , 2018, 46(2): 338-344.
李强, 李会锋, 袁媛, 等.在轨冷气推进系统泄漏估计[J].推进技术, 2018, 39(5):1187-1193.
LI Q, LI H F, YUAN Y, et al .. Estimation for cold gas propellant leakage on orbit[J]. Journal of Propulsion Technology , 2018, 39(5): 1187-1193. (in Chinese)
宗云花, 于艳波, 邸晶晶, 等.星相机高精度校时计时方法[J].航天器工程, 2019, 28(2):36-42.
ZONG Y H, YU Y B, DI J J, et al .. High precision time correction and calculation method of star camera[J]. Spacecraft Engineering , 2019, 28(2): 36-42. (in Chinese)
VANHOVE E, ROUSSEL J F, REMAURY S, et al .. Aging of thermal coatings on low earth orbit: in-flight measurements and modeling[J]. Journal of Spacecraft and Rockets , 2016, 53(6): 1141-1145.
周鑫, 张宇玮, 于龙, 等.GH4169高温合金与四氧化二氮推进剂环境的长期相容性试验研究[J].航天器环境工程, 2019, 36(2):161-164.
ZHOU X, ZHANG Y W, YU L, et al .. Experimental study of the long-term compatibility of superalloy GH4169 with dinitrogen tetroxide[J]. Spacecraft Environment Engineering , 2019, 36(2): 161-164. (in Chinese)
DANIELS C C, BRAUN M J, ORAVEC H A, et al .. Leak-rate-quantification method for gas pressure seals with controlled pressure differential[J]. Journal of Spacecraft and Rockets , 2017, 54(6): 1228-1234.
TAYLOR S C, MATHER J, DANIELS C C. Investigation of the impact of surface blending and ultraviolet radiation exposure on elastomer seal leak rate performance for space seal applications[C].7 th AIAA Atmospheric and Space Environments Conference , Dallas , TX . Reston , Virginia : American Institute of Aeronautics and Astronautics , 2015-3322: 1-11.
DANIELS C, WASOWSKI J, PANICKAR M, et al .. Leak rate performance of three silicone elastomer compounds after ground-simulated and on-orbit environment exposures[C].3 rd AIAA Atmospheric Space Environments Conference , Honolulu , Hawaii . Reston , Virigina : American Institute of Aeronautics and Astronautics , 2011-3823: 1-11.
PENNEY N, WASOWSKI J, DANIELS C. Temperature and atomic oxygen effects on helium leak rates of a candidate main interface seal[C].46 th AIAA / ASME / SAE / ASEE Joint Propulsion Conference & Exhibit , Nashville , TN . Reston , Virigina : American Institute of Aeronautics and Astronautics , 2010-6986: 1-7.
贾世锦, 明章鹏, 刘建盈, 等.空间推进系统在轨有关热控问题分析[J].航天器环境工程, 2019, 36(2):165-170.
JIA SH J, MING ZH P, LIU J Y, et al .. Analysis on the thermal control problems of space booster sub-system in orbit[J]. Spacecraft Environment Engineering, 2019, 36(2): 165-170. (in Chinese)
IOVINE J. International space station passive thermal control system top ten lessons-learned[C]. 48 th International Conference on Environmental Systems , Albuquerque , New Mexico , 2018, ICES-2018-004: 1-8.
CHAMBLISS J. The ISS TCS system manager experience[C]. 48 th International Conference on Environmental Systems , Albuquerque , New Mexico , 2018, ICES-2018-297: 1-16.
BUHL N, ALTENBURG M, MANNS M. Sentinel-2A/B thermal design-lessons learnt from TBTV, LEOP and IOC[C]. 48 th International Conference on Environmental Systems , Albuquerque , New Mexico , 2018, ICES-2018-148: 1-16.
YANG B H. Exploration of CASC's commercial space[J]. Aerospace China, 2018, 19(1): 27-30.
WANG S, JIN R, ZHU J D. SuperView-1 - China's first commercial remote sensing satellite constellation with a high resolution of 0.5 m[J]. Aerospace China , 2018, 19(1): 31-38.
尤政, 师帅, 赵开春, 等.纳型卫星研制关键技术[J].航天器工程, 2019, 28(1):1-9.
YOU ZH, SHI SH, ZHAO K CH, et al .. Key technologies for research & development of nanosatellite[J]. Spacecraft Engineering , 2019, 28(1): 1-9. (in Chinese)
白照广.中国现代小卫星发展成就与展望[J].航天器工程, 2019, 28(2):1-8.
BAI ZH G. Development achievements and prospects of China modern small satellite[J]. Spacecraft Engineering, 2019, 28(2): 1-8. (in Chinese)
0
浏览量
83
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构