浏览全部资源
扫码关注微信
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
[ "杨燕(1972-),女,河南临颍人,博士,教授、硕士生导师,1995年于兰州铁道学院获得学士学位,2006年于兰州交通大学获得硕士学位,2010年于兰州大学获得博士学位,主要从事数字图像处理、智能信息处理及语音信号处理方面的研究。E-mail:yangyantd@mail.lzjtu.cn" ]
[ "张国强(1992-),男,陕西武功人,硕士研究生,主要研究方向为数字图像处理。E-mail: 791783286@qq.com" ]
收稿日期:2019-05-23,
录用日期:2019-7-19,
纸质出版日期:2019-11-15
移动端阅览
杨燕, 张国强, 姜沛沛. 结合景深估计的高斯衰减与自适应补偿去雾[J]. 光学 精密工程, 2019,27(11):2439-2449.
Yan YANG, Guo-qiang ZHANG, Pei-pei JIANG. Gaussian decay and adaptive compensation dehazing algorithm combined with scene depth estimation[J]. Optics and precision engineering, 2019, 27(11): 2439-2449.
杨燕, 张国强, 姜沛沛. 结合景深估计的高斯衰减与自适应补偿去雾[J]. 光学 精密工程, 2019,27(11):2439-2449. DOI: 10.3788/OPE.20192711.2439.
Yan YANG, Guo-qiang ZHANG, Pei-pei JIANG. Gaussian decay and adaptive compensation dehazing algorithm combined with scene depth estimation[J]. Optics and precision engineering, 2019, 27(11): 2439-2449. DOI: 10.3788/OPE.20192711.2439.
为了解决暗通道先验算法中对大片天空区域或大片白色区域失效的问题,提出一种结合景深估计的高斯衰减与自适应补偿去雾算法。首先通过RGB通道散射强度的算术平均与雾浓度近似正相关的关系估计场景深度;然后,结合景深的边缘信息,利用相邻像素之间的差异构造高斯滤波器对最小值通道进行滤波处理得到高斯暗通道;其次,利用高斯暗通道与其高斯函数之间的关系,通过调节因子与雾浓度呈负相关的关系,提出结合景深与高斯环绕函数卷积的策略获取自适应调节因子,从而对透射率进行自适应补偿估计;最后,结合大气散射模型复原无雾图像。实验结果表明,该算法在确保运行效率的基础上,可以准确的估计透射率,与经典算法相比较,在客观评价中可见边数平均提高了0.02,饱和像素点数平均下降了0.002。所提算法可以复原出自然清晰的无雾图像,尤其是在景深远处和天空区域取得了良好的效果。
In order to solve the problem of large sky or white area failure in a dark channel prior algorithm
a Gaussian decay and adaptive compensation dehazing algorithm combined with scene depth estimation was proposed. Firstly
estimating the scene depth by an approximately positive correlation between the arithmetic mean of the RGB channel scattering intensities and the haze concentration. Then
combined with the edge information of the scene depth
a Gaussian filter is constructed using the difference between adjacent pixels to filter the minimum channel to obtain a Gaussian dark channel. Secondly
using the relationship between the Gaussian dark channel and its Gaussian function
through the relationship between the adjustment factor and the haze concentration
a strategy that combines convolution with scene depth and Gaussian surround function was proposed to obtain the adjustment factor; then
the transmission was adaptively compensated and estimated. Finally
the haze-free image was restored with the atmospheric scattering model. The experimental results show that the proposed algorithm can accurately estimate the transmission based on the operation efficiency. In the objective evaluation
the average number of edges increased by 0.02 while the number of saturated pixels decreased by 0.002. The proposed algorithm can also recover natural and clear haze-free images
especially in the scene depth and the sky area.
XU Y, WEN J, FEI L K, et al .. Review of video and image defogging algorithms and related studies on image restoration and enhancement[J]. IEEE Access , 2016, 4: 165-188.
张峥, 李奇, 徐之海, 等.结合颜色线和暗通道的遥感图像去雾[J].光学 精密工程, 2019, 27(1):181-190.
ZHANG ZH, LI Q, XU ZH H, et al. Color-line and dark channel based dehazing for remote sensing images[J]. Opt. Precision Eng. , 2019, 27(1): 181-190. (in Chinese)
KIM J Y, KIM L S, HWANG S H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology , 2001, 11(4): 475-484.
SEOW M J, ASARI V K. Homomorphic processing system and ratio rule for color image enhancement[C]. 2004 IEEE International Joint Conference on Neural Networks ( IEEE Cat . No .04 CH 37541), Budapest , Hungary . New York , USA : IEEE. 10.1109/ijcnn.2004.1381031 http://dx.doi.org/10.1109/ijcnn.2004.1381031 .
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011, 33(12): 2341-2353.
MENG G F, WANG Y, DUAN J Y, et al .. Efficient image dehazing with boundary constraint and contextual regularization[C]. 2013 IEEE International Conference on Computer Vision , December 1-8, 2013. Sydney , Australia . New York , USA : IEEE , 2013.
SUN W, WANG H, SUN C H, et al .. Fast single image haze removal via local atmospheric light veil estimation[J]. Computers & Electrical Engineering , 2015, 46: 371-383.
ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing , 2015, 24(11): 3522-3533.
杨燕, 陈高科, 周杰.基于高斯权重衰减的迭代优化去雾算法[J].自动化学报, 2019, 45(4): 819-828.
YANG Y, CHEN G K, ZHOU J. Iterative optimization defogging algorithm using Gaussian weight decay[J]. Acta Automatica Sinica, 2019, 45(4): 819-828.(in Chinese)
杨燕, 李一菲, 岳辉.一种自适应的多级透射率估计去雾算法[J].光子学报, 2019, 48(3): 180-189.
YANG Y, LI Y F, YUE H. An adaptive multiscale transmission estimation dehazing algorithm[J]. Acta Photonica Sinica , 2019, 48(3): 180-189.(in Chinese)
REN W Q, LIU S, ZHANG H, et al .. Single Image Dehazing via Multi-Scale Convolutional Neural Networks [M]. Berlin: Springer International Publishing, 2016: 154-169.
陈清江, 张雪, 柴昱洲.基于卷积神经网络的图像去雾算法[J].液晶与显示, 2019, 34(2): 220-227.
CHEN Q J, ZHANG X, CHAI Y ZH. Image defogging algorithms based on multiscale convolution neural network [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(2): 220-227.(in Chinese)
CAI B L, XU X M, JIA K, et al .. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing , 2016, 25(11): 5187-5198.
HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
王一斌, 尹诗白, 吕卓纹.自适应背景光估计与非局部先验的水下图像复原[J].光学 精密工程, 2019, 27(2):499-510.
WANG Y B, YIN SH B, LV ZH W. Underwater image restoration with adaptive background light estimation and non-local prior[J]. Opt. Precision Eng. , 2019, 27(2): 499-510. (in Chinese)
HAUTIÄRE N, TAREL J P, AUBERT D, et al .. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis & Stereology , 2011, 27(2): 87-95.
0
浏览量
93
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构