浏览全部资源
扫码关注微信
中国民航大学 电子信息与自动化学院,天津 300300
[ "张红颖(1978-),女,天津人,博士,教授,硕士生导师,分别于2001年、2004年、2007年在天津大学获得学士、硕士、博士学位,主要从事图像工程与计算机视觉方面的研究。Email:carole_zhang0716@163.com" ]
[ "王汇三(1996-),男,山东德州人,硕士研究生,2017年于江苏大学获得学士学位,主要从事图像处理、计算机视觉方面的研究。E-mail: 1159083569@qq.com" ]
收稿日期:2019-04-19,
录用日期:2019-6-30,
纸质出版日期:2019-11-15
移动端阅览
张红颖, 王汇三, 胡文博. 基于双模型的相关滤波跟踪[J]. 光学 精密工程, 2019,27(11):2450-2458.
Hong-ying ZHANG, Hui-san WANG, Wen-bo HU. Correlation filter tracking algorithm based on double model[J]. Optics and precision engineering, 2019, 27(11): 2450-2458.
张红颖, 王汇三, 胡文博. 基于双模型的相关滤波跟踪[J]. 光学 精密工程, 2019,27(11):2450-2458. DOI: 10.3788/OPE.20192711.2450.
Hong-ying ZHANG, Hui-san WANG, Wen-bo HU. Correlation filter tracking algorithm based on double model[J]. Optics and precision engineering, 2019, 27(11): 2450-2458. DOI: 10.3788/OPE.20192711.2450.
为解决因边界效应导致相关滤波跟踪算法不够稳健及其不能适应尺度变化的问题,提出了一种基于双模型的相关滤波跟踪算法。将目标跟踪分为位置预测和尺度预测两部分,在位置滤波器模型进行位置预测阶段,先通过对待测样本进行样本增强处理,使得到的样本更符合实际场景。再通过交替方向乘子法进行位置滤波器的迭代求解,最后得到估计的目标位置。在尺度滤波器模型进行尺度预测阶段,通过在估计的目标位置处构建多尺度金字塔来训练尺度滤波器,再求解得到目标的尺度,将双模型得到的结果作为最终的跟踪结果。最后通过引入一个遮挡判据来判断是否更新模型以提高算法的鲁棒性。实验表明,改进算法和经典的相关滤波跟踪算法相比,在跟踪成功率上提高了18%,在跟踪精度上提高了11%。在目标被遮挡、自身尺度变化时,改进算法仍能稳定跟踪。
For the correlation filtering tracking algorithm is not robust enough and cannot adapt to scale changes due to the boundary effect
an improved correlation filtering tracking algorithm based on double model was proposed. The target tracking consisted of position prediction and scale prediction. In the position prediction stage
the samples were enhanced to make them more consistent with the actual scene. Then
the solution was obtained using the alternating direction method of multipliers
and the estimated target position was achieved. For scale prediction
a multiscale pyramid was constructed to train the scale filter
and then the target scale was acquired. The final tracking result was determined by both the target position and scale. Finally
an occlusion criterion was introduced to determine whether the model is updated or not. Compared with the classical correlation filtering tracking algorithm
the proposed algorithm boosts the tracking success rate by 18% and tracking accuracy by 11%. The algorithm can track the target stably even when the target is occluded and its scale changes.
张微, 康宝生.相关滤波目标跟踪进展综述[J].中国图象图形学报, 2017, 22(8): 1017-1033.
ZHANG W, KANG B SH. Recent advances in correlation filter-based object tracking: a review[J]. Journal of Image and Graphics , 2017, 22(8): 1017-1033.(in Chinese)
BOLME D, BEVERIDGE J R, DRAPER B A, et al .. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition , June 13-18, 2010. San Francisco , CA , USA . New York , USA : IEEE , 2010: 2544-2550.
RUI C, MARTINS P, BATISTA J. Exploiting the circulant structure of tracking-by-detection with kernels[C]// European Conference on Computer Vision . Springer , Berlin , Heidelberg , 2012: 702-715.
HENRIQUES J F, CASEIRO R, MARTINS P, et al .. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
DANELLJAN M, HAGER G, KHAN F S, et al .. Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ), June 27-30, 2016. Las Vegas , NV , USA . New York , USA : IEEE , 2016: 1430-1438.
M. DANELLJAN, G. HAGER, F. SHAHBAZ KHAN, et al .. Learning spatially regularized correlation filters for visual tracking[C]. 2015 IEEE International Conference on Computer Vision ( ICCV ). IEEE Computer Society , 2015: 4310-4318.
DANELLJAN M, HAGER G, KHAN F S, et al .. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017, 39(8): 1561-1575.
LI Y, ZHU J K. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration [M]. Berlin: Springer International Publishing, 2015.
刘教民, 郭剑威, 师硕.自适应模板更新和目标重定位的相关滤波器跟踪[J].光学 精密工程, 2018, 26(8): 2100-2111.
LIU J M, GUO J W, SHI SH. Correlation filter tracking based on adaptive learning rate and location refiner[J]. Opt. Precision Eng ., 2018, 26(8): 2100-2111.(in Chinese)
陈典兵, 朱明, 王慧利, 等.基于稀疏正则约束的子空间视觉跟踪[J].光学 精密工程, 2018, 26(4): 989-997.
CHEN D B, ZHU M, WANG H L, et al .. Visual tracking algorithm based on the sparse-regularized subspace[J]. Opt. Precision Eng. , 2018, 26(4): 989-997.(in Chinese)
王秀友, 范建中, 刘华明, 等.自适应交互式融合的视觉跟踪[J].光学 精密工程, 2017, 25(9): 2499-2507.
WANG X Y, FAN J Z, LIU H M, et al .. Visual tracking via adaptive interactive fusion[J]. Opt. Precision Eng ., 2017, 25(9): 2499-2507.(in Chinese)
HENRIQUES J F, CASEIRO R, MARTINS P, et al .. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015, 37(3): 583-596.
GALOOGAHI H K, SIM T, LUCEY S. Multi-channel correlation filters[C]. 2013 IEEE International Conference on Computer Vision , December 1-8, 2013. Sydney , Australia . New York , USA : IEEE , 2013.
GALOOGAHI H K, SIM T, LUCEY S. Correlation filters with limited boundaries[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ), June 7-12, 2015. Boston , MA , USA . New York , USA : IEEE , 2015: 4630-4638.
BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning , 2010, 3(1): 1-122.
SHERMAN J, MORRISON W J. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix[J]. The Annals of Mathematical Statistics , 1950, 21(1): 124-127.
KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2012, 34(7): 1409-1422.
HARE S, SAFFARI A, AND P. H. TORR. Struck: Structured output tracking with kernels[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2016, 38(10):2096-2109.
LUCA BERTINETTO, JACK VALMADRE, STUART GOLODETZ, et al .. Staple: Complementary Learners for Real-Time Tracking[J]. International Conference on Computer Vision and Pattern Recognition (CVPR). IEEE , 2015, 38(2):1401-1409.
DANELLJAN M, HAGER G, KHAN F S, et al .. Convolutional features for correlation filter based visual tracking[C]. 2015 IEEE International Conference on Computer Vision Workshop ( ICCVW ), December 7-13, 2015. Santiago , Chile . New York , USA : IEEE , 2015: 621-629.
WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015, 37(9): 1834-1848.
0
浏览量
29
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构