浏览全部资源
扫码关注微信
1.火箭军工程大学 作战保障学院,陕西 西安 710025
2.火箭军工程大学 导弹工程学院,陕西 西安 710025
[ "王舒洋(1991-),女,浙江绍兴人,博士研究生,分别于2014年、2016年于火箭军工程大学获得学士、硕士学位,主要从事遥感图像处理与目标提取的研究。E-mail:yelvlanshu@163.com" ]
杨东方(1985-),男,湖南衡阳人,副教授,分别于2006年、2009年、2013年于第二炮兵工程大学获得学士、硕士和博士学位,主要研究方向为计算机视觉、智能图像处理、现代导航技术等。E-mail:yangdf301@126.com YANG Dong-fang, E-mail: yangdf301@126.com
收稿日期:2019-03-08,
录用日期:2019-5-12,
纸质出版日期:2019-11-15
移动端阅览
王舒洋, 杨东方, 贺浩, 等. 融合高阶信息的遥感影像建筑物自动提取[J]. 光学 精密工程, 2019,27(11):2474-2483.
Shu-yang WANG, Dong-fang YANG, Hao HE, et al. High-order statistics integration method for automatic building extraction of remote sensing images[J]. Optics and precision engineering, 2019, 27(11): 2474-2483.
王舒洋, 杨东方, 贺浩, 等. 融合高阶信息的遥感影像建筑物自动提取[J]. 光学 精密工程, 2019,27(11):2474-2483. DOI: 10.3788/OPE.20192711.2474.
Shu-yang WANG, Dong-fang YANG, Hao HE, et al. High-order statistics integration method for automatic building extraction of remote sensing images[J]. Optics and precision engineering, 2019, 27(11): 2474-2483. DOI: 10.3788/OPE.20192711.2474.
针对遥感影像中建筑物目标与背景环境区分度低而造成的提取效果较差的问题,本文提出了融合高阶信息的编解码网络方法以改善建筑物自动提取的精度。首先,针对遥感影像建筑提取任务,使用深度编解码网络完成对建筑物目标的低阶语义特征提取;其次,使用多项式核完成对深度网络中间特征图的高阶描述,以提升网络对于模糊特征的辨识能力;最后,将低阶特征与高阶特征级联后,送入编解码网络的末端,得到对建筑物的分割结果。在Massachusetts Buildings数据集上进行试验,其召回率、准确率和F1-score指标分别达到了85.1%,77.5%和80.9%,综合指标F1-score相比于基础深度编解码网络提升约4%。本文所提方法改进了编解码器网络对于遥感影像建筑物自动提取任务的表现性能,能够更加精确地提取与背景区分度较低的建筑物目标,具有良好的实用价值。
To address the poor performance of building extraction caused by low discrimination between the building target and background environment in remote sensing images
a high-order statistics integrated encoder-decoder network method was proposed to improve the accuracy of automatic building extraction. First
the deep encoder-decoder network was used to extract the low-order semantic features of building targets. Then
the polynomial kernels were used to achieve the high-order description of intermediate feature maps to improve the ability to recognize ambiguous features. Finally
the lower-order feature maps cascading with the higher-order features were sent to the end of the network to obtain the segmentation results of the building. Experiments on the Massachusetts Buildings dataset show that the proposed approach can achieve recall of 85.1%
precision of 77.5% and F1-score of 80.9%. Compared with the baseline network
the proposed approach is 4% higher in the metric of F1-score. The proposed method improves the performance of encoder-decoder networks for automatic building extraction of remote sensing images
and can extract building targets with low discrimination more accurately; hence
it has a good application value.
杨州, 慕晓冬, 王舒洋, 等.基于多尺度特征融合的遥感图像场景分类[J].光学 精密工程, 2018, 26(12): 3099-3107.
YANG ZH, MU X D, WANG SH Y, et al .. Scene classification of remote sensing images based on multiscale features fusion[J]. Opt. Precision Eng. , 2018, 26(12): 3099-3107. (in Chinese)
HUANG X, ZHANG L P. Morphological building/shadow index for building extraction from high-resolution imagery over urban areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2012, 5(1): 161-172.
OK A O, SENARAS C, YUKSEL B. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing , 2013, 51(3): 1701-1717.
CUI S Y, YAN Q, REINARTZ P. Complex building description and extraction based on Hough transformation and cycle detection[J]. Remote Sensing Letters , 2012, 3(2): 151-159.
LIASIS G, STAVROU S. Building extraction in satellite images using active contours and colour features[J]. International Journal of Remote Sensing , 2016, 37(5): 1127-1153.
田昊, 杨剑, 汪彦明, 等.基于先验形状约束水平集模型的建筑物提取方法[J].自动化学报, 2010, 36(11): 1502-1511.
TIAN H, YANG J, WANG Y M, et al .. Towards automatic building extraction: variational level set model using prior shape knowledge[J]. Acta Automatica Sinica , 2010, 36(11): 1502-1511. (in Chinese)
唐聪, 凌永顺, 杨华, 等.基于深度学习的红外与可见光决策级融合检测[J].红外与激光工程, 2019, 48(6): 456-470.
TANG C, LING Y SH, YANG H, et al .. Decision-level fusion detection for infrared and visible spectra based on deep learning[J]. Infrared and Laser Engineering , 2019, 48(6): 456-470.
李宇, 刘雪莹, 张洪群, 等.基于卷积神经网络的光学遥感图像检索[J].光学 精密工程, 2018, 26(1): 200-207.
LI Y, LIU X Y, ZHANG H Q. Optical remote sensing image retrieval based convolutional neural network[J]. Opt. Precision Eng ., 2018, 26(1): 200-207. (in Chinese)
MNIH V, HINTON G E. Learning to detect roads in high-resolution aerial images[C]. European Conference on Computer Vision : Part Ⅵ . 2010: 210-223.
MNIH V, HINTOM G E. Learning to label aerial images from noisy data[J]. Proceedings of the 29th International Conference on Machine Learning (ICML-12) , 2012: 567-574.
MNIH V. Machine Learning for Aerial Image Labeling [D]. Canada : University of Toronto, 2013.
SAITO S, AOKI Y. Building and road detection from large aerial imagery[C]. Image Processing : Machine Vision Applications Ⅷ . International Society for Optics and Photonics , 2015.
ALSHEHHI R, MARPU P R, WOON W L, et al .. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2017, 130: 139-149.
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017, 39(4): 640-651.
ZHONG Z L, LI J, CUI W H, et al .. Fully convolutional networks for building and road extraction: Preliminary results[C]//2016 IEEE International Geoscience and Remote Sensing Symposium ( IGARSS ), July 10-15, 2016. Beijing , China . New York , USA : IEEE , 2016: 1591-1594..
WU G M, SHAO X W, GUO Z L, et al .. Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks[J]. Remote Sensing , 2018, 10(3): 407.
YANG H L, YUAN J, LUNGA D, et al .. Building extraction at scale using convolutional neural network: mapping of the united states[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2018, 11(8): 2600-2614.
MOSINKA A, MARQUZE-NEILA P, KOZINSKI M, et al .. Beyond the pixel-wise loss for topology-aware delineation[C]. IEEE Conference on Computer Vision and Pattern Recognition , 2018.
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. ImageNet Challenge , 2014: 1-10.
KONG S, FOWLKES C. Low-rank bilinear pooling for fine-grained classification[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ), July 21-26, 2017. Honolulu , HI . New York , USA : IEEE , 2017: 7025-7034.
CUI Y, ZHOU F, WANG J, et al .. Kernel pooling for convolutional neural networks[C]. Proceedings -30 th IEEE Conference on Computer Vision and Pattern Recognition , 2017: 3049-3058.
WANG H, WANG Q, GAO M, et al .. Multi-scale location-aware kernel representation for object detection[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition , 2018.
RONNEBERGER O, FISCHER P, BROX T. U-Net : Convolutional Networks for Biomedical Image Segmentation [M]. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241.
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017, 39(12): 2481-2495.
CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]. International Conference on Learning Representations , 2016.
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. Iernational Conference on Machine Learning , 2015: 448-456.
MURRAY N, PERRONNIN F. Generalized max pooling[C]. Computer Vision & Pattern Recognition , 2014, 2473-2480.
FENG J, NI B, TIAN Q, et al .. Geometric äp-norm feature pooling for image classification.[C]. Computer Vision & Pattern Recognition. IEEE , 2011, 2609-2704.
CAI S, ZUO W, ZHANG L. Higher-order integration of hierarchical convolutional activations for fine-grained visual categorization[J]. Proceedings of the IEEE International Conference on Computer Vision , 2017: 511-520.
KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review , 2009, 51(3): 455-500.
KINGA D, ADAM J B. A method for stochastic optimization[C]. International Conference on Learning Representations ( ICLR ), 2015, 5.
0
浏览量
80
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构