浏览全部资源
扫码关注微信
1.华北科技学院 机电工程学院,河北 燕郊 065201
2.华北科技学院 环境工程学院,河北 燕郊 065201
[ "陈彬(1972-),男,博士,教授,2007年于华中科技大学获得博士学位,主要研究方向为在线监测和信号处理技术研究。E-mail:hustchb@163.com" ]
[ "刘阁(1973-),女,副教授, 主要研究方向为传质分离技术研究。E-mail: lycy9945@163.com" ]
收稿日期:2019-04-30,
录用日期:2019-6-4,
纸质出版日期:2019-11-15
移动端阅览
陈彬, 刘阁. 不同颗粒浓度油液压力振动信号特征的HHT提取[J]. 光学 精密工程, 2019,27(11):2484-2497.
Bin CHEN, Ge LIU. Extraction for HHT features of pressure vibration signals of oil pulsating flow with different particle concentration[J]. Optics and precision engineering, 2019, 27(11): 2484-2497.
陈彬, 刘阁. 不同颗粒浓度油液压力振动信号特征的HHT提取[J]. 光学 精密工程, 2019,27(11):2484-2497. DOI: 10.3788/OPE.20192711.2484.
Bin CHEN, Ge LIU. Extraction for HHT features of pressure vibration signals of oil pulsating flow with different particle concentration[J]. Optics and precision engineering, 2019, 27(11): 2484-2497. DOI: 10.3788/OPE.20192711.2484.
颗粒浓度对油液的湍流脉动特性有一定的影响,利用Hilbert-Huang变换方法对含不同颗粒浓度的油液脉动流的压力信号进行分析,探讨颗粒浓度对压力信号的振动特征的影响规律。利用经验模态函数(EMD)、Hilbert变换和包络解调等方法,获取压力信号的Hilbert谱和信号能量特征,分析了不同颗粒浓度的油液压力信号的能量分布和调幅调频特征以及调制信号的瞬时频率。结果表明以IMF能量作为特征向量将各阶IMF分量划分为3个信号特征频带,随着颗粒浓度的增加,高频率区的累积分布基本稳定在0.7范围内,而中频率区出现下降、低频率区呈现上升的状态;高频率区的边际谱平均幅值随着油液中颗粒浓度的增加呈现先增加后降低的发展趋势,中低频率成分的幅值呈增加的趋势;对压力信号在不同频带内的瞬时能量谱进行积分,得到压力信号的总能量随着颗粒浓度的增加出现下降趋势,中频率区的能量特征值呈逐渐衰减的变化趋势;含不同颗粒浓度的油液压力信号具有调制特征,Hilbert包络解调信号的瞬时频率均值呈先增加后下降的发展趋势。
Particle concentration has any effect on turbulence characteristics of the oil
by using Hilbert-Huang method
the pressure signal of oil pulsating flow with different particle concentration was analyzed
and the law of particle concentration effect on vibration characteristics of pressure signal was discussed. Using empirical mode function
Hilbert transform and envelope demodulation method
the Hilbert spectrum and energy characteristics of oil pressure signal was obtained
analyzes the energy distribution of the pressure signal of oil containing different particle concentration
and the characteristics of frequency modulation and amplitude modulation
and the instantaneous frequency of the modulating signal were analyzed. The results showed that each intrinsic mode function (IMF) component is divided into three signal characteristic bands as the characteristic vector using IMF energy; with particles concentration increased
the time variation of the each order IMF component of pressure signal of oil pulsating flow of develops gradually from high band of modulation features to low band
cumulative distribution of high-frequency district of marginal spectrum of pressure signal stables basically range within 0.7. Moreover
as the middle-frequency district decreased
the low-frequency district tended to increase. The average amplitude of the high-frequency district of the marginal spectrum rendered first increased and then decreased as the particle concentration of oil increased
and the amplitude of the middle- and low-frequency components increased. The instantaneous energy spectrum of the pressure signal in different frequency bands was integrated to obtain the total energy of the pressure signal that decreased as particle concentration increased and the energy characteristics of the middle-frequency district declined. Oil pressure signals with different particle concentrations have modulation characteristics. The instantaneous frequency mean value of the Hilbert envelope demodulation signal first increased and then decreased.
PAN Y, BANERJEE S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids , 1996, 8(10): 2733-2755.
CROWE C T, GORE R A, TROUTT T R. Particle dispersion by coherent structures in free shear flows[J]. Particulate Science & Technology , 1985, 3(3):149-158.
HELLEST A S, GHAFFARI M, BALAKIN B V, et al .. A parametric study of cohesive particle agglomeration in a shear flow. Numerical simulations by the discrete element method[J]. Journal of Dispersion Science & technology , 2016. 38(5): 611-620.
DRITSELIS C D, VLACHOS N S. Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow[J]. Physics of Fluids , 2008. 20(5): 69.
BIZHAEM H K, TABRIZI H B. Investigating effect of pulsed flow on hydrodynamics of gas-solid fluidized bed using two-fluid model simulation and experiment[J]. Powder Technology , 2017, 237(3): 14-23.
M RASHIDI, G HETSRONI, S BANERJEE. Pariticle turbulence interaction in a boundary layer[J]. International Journal of Multiphase Flow , 1990, 16(6): 935-949.
HUSSAIN A K M F, REYNOLDS W C. The mechanics of an organised wave in a turbulent shear flow[J]. J. Fluid Mech , 1972, 54(5):263-288.
AHRENS C, RONNEBERGER D. Luftschall damepfung in turbulent durchstromten schallharton Rohren bei verschidenen Wandrauhigkeiten[J]. Acoustica , 1971, (25):150-157.
RONNEBERGER D, AHERENS C D. Wall shear stress caused by small amplitude perturbations of turbulent boundary-layer flows: an experimental investigation[J]. J.Fluid. Mech , 1977, 83 (3):433-464.
GERRARD J H. An experimental investigation of pulsating turbulent water flow in a tube[J]. J. Fluid Mech , 2006, 46 (1):43-64.
RAMAPRIAN B R, TU S W. An experimental study of oscillatory pipe flow at transitional Reynolds numbers[J]. J. Fluid Mech , 2006, 100 (3):513-544.
TU S W, RAMAPRIAN B R. Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions[J]. J. Fluid Mech , 2006, 137(137):31-58.
TARDU S, BINDER G, BLACKWELDER R F. Turbulent channel flow with largeamplitude velocity oscillations[J] . J. Fluid Mech , 2006, 267(267):109-151.
TARDU S F, BINDER G. Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies[J]. Phys. Fluids A , 2002, 5(2):2028-2037.
BINDER G, TARDU J, VEZIN P. Cyclic modulation of Reynolds stresses and length scales in pulsed turbulent channel flow[J]. Proc Roy. Soc. London Ser. A , 1995, 451(1941):121-139.
TARDU S, BINDER G. Reaction of bursting to an oscillating homogeneous pressure gradient[J]. Eur. J. Mech. B/Fluids , 1997, 16 (1):89-120.
TARDU S F, COSTA P D. Experiments and modelling of an unsteady turbulent channel flow[J]. AIAA J , 2005, 43(43):140-148.
徐斌, 温广瑞, 苏宇, 等.多层次信息融合在铁谱图像磨粒识别中的应用[J].光学 精密工程, 2018, 26(6):1551-1560.
XU B, WEN G R, SU Y, et al .. Application of multi-level information fusion for wear particle recognition of ferrographic images[J]. Opt. Precision Eng ., 2018, 26(6):1551-1560. (in Chinese)
田昊.液压油路气液两相传质的光学测量[J].光学 精密工程, 2018, 26(12):2902-2908.
TIAM H.Optical measurement of mass transfer between gas and liquid phases in hydraulic circuits[J]. Opt. Precision Eng. , 2018, 26(12):2902-2908. (in Chinese)
HUANG N E, CHEN X, LO M, et al .. On hilbert spectral representation: a true time-frequency representation for nonlinear and nonstationary data[J]. Advances in Adaptive Data Analysis , 2011, 3(01):63-93.
刘铮, 毛宏霞, 戴聪明, 等.基于多源数据多特征融合的弱小目标关联研究[J].红外与激光工程, 2019, 48(5): 526001-0526001.
LIU Z, MAO H X, DAI C M, et al .. Heterogeneous sensors faint targets data association based on multi-feature fusion[J]. Infrared and Laser Engineering , 2019, 48 (5): 526001-0526001. (in Chinese)
董红生, 张爱华, 邱天爽, 等.基于Hilbert谱的心率变异信号时频分析方法[J].仪器仪表学报, 2011, 32(2):271-278.
DONG H SH, ZHANG A H, QIU T SH, et al .. Time frequency analysis method of heart rate variability signal based on the Hilbert spectrum[J]. Chinese Journal of Scientific Instnxnent , 2011, 32(2):271-278. (in Chinese)
BIN S, HONGJIAN Z, LU C, et al .. Flow regime identification of gas-liquid two-phase flow based on HHT[J]. Chinese J. Chem. Eng. , 2006, 14(1): 24-30.
周云龙, 张学清, 张松林.基于希尔伯特-黄变换和隐马尔可夫模型的气液两相流流型识别方法[J].仪器仪表学报, 2009, 30(7):1512-1517.
ZHOU Y L, ZHANG X Q, ZHANG S L. Applied study on flow regime identification of gas-liquid two-phase flow based on Hilbert-Huang transform and HMM[J]. Chinese Journal of Scientific Instnxnent , 2009, 30(7):1512-1517. (in Chinese)
徐平平, 柳靖, 马飞, 等.自振射流喷嘴腔内压力信号分析方法的研究[J].振动与冲击, 2015, 34(17):180-184.
XU P P, LIU J, MA F, et al .. Analysis methods for flow pressure signals in oscillation cavity of a self-resonating jet nozzle[J]. Journal vibration and shock , 2015, 34(17):180-184. (in Chinese)
瞿伟廉, 刘少兵, 王锦文, 等.弧形闸门流激振动脉动压力HHT分析[J].武汉理工大学学报, 2006, 28(9):68-71.
QU W L, LIU S B, WANG J W, et al .. HHT Analysis of Stochastic Fluctuant Pressure for Flow-induced Vibration in Radial Gate[J]. Journal of wuhan university of technology , 2006, 28(9):68-71. (in Chinese)
LU P, LI W, ZHENG X, et al .. Experimental research and HHT analysis on the flow characteristics of pneumatic conveying under high pressure[J]. Applied Thermal Engineering , 2016, 108: 502-507.
赵凯, 仲兆平, 王肖祎, 等.基于HHT法的流化床内生物质和石英砂双组分颗粒压差脉动信号分析[J].化工学报, 2015, 66(04):1282-1289.
ZHAO K, ZHONG ZH P, WANG X Y, et al .. Pressure fluctuation signal analysis of two-component biomass and quartz sand particles based on Hilbert-Huang transform in fluidized-bed[J]. Journal of Chemical Engineering , 2015, 66(4):1282-1289. (in Chinese)
LI J, WANG H, LIU Z, et al .. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow[J]. Experiments in Fluids , 2012, 53(5):1385-1403.
0
浏览量
142
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构