浏览全部资源
扫码关注微信
上海交通大学 机械与动力工程学院,上海 200240
[ "徐斯强 (1988-),男,湖北赤壁人,博士研究生,2010年、2013年于武汉科技大学分别获得学士和硕士学位,主要从事柔顺机构建模和控制方面的研究。E-mail:xusiqiang@sjtu.edu.cn" ]
刘品宽 (1969-),男,湖北天门人,研究员,博士生导师,2003年于哈尔滨工业大学获得博士学位,主要从事纳米级微定位技术、微操作机器人,电子制造中的高速高精度定位与操纵,以及纳米制造中的精密驱动与控制等方面的研究。E-mail:pkliu@sjtu.edu.cn LIU Pin-kuan, E-mail: pkliu@sjtu.edu.cn
收稿日期:2019-07-08,
录用日期:2019-8-25,
纸质出版日期:2019-12-25
移动端阅览
徐斯强, 朱晓博, 刘品宽. 粘滑式压电驱动平台的复合控制[J]. 光学精密工程, 2019,27(12):2571-2580.
Si-qiang XU, Xiao-bo ZHU, Pin-kuan LIU. Composite control of piezo-actuated stick-slip devices[J]. Optics and precision engineering, 2019, 27(12): 2571-2580.
徐斯强, 朱晓博, 刘品宽. 粘滑式压电驱动平台的复合控制[J]. 光学精密工程, 2019,27(12):2571-2580. DOI: 10.3788/OPE.20192712.2571.
Si-qiang XU, Xiao-bo ZHU, Pin-kuan LIU. Composite control of piezo-actuated stick-slip devices[J]. Optics and precision engineering, 2019, 27(12): 2571-2580. DOI: 10.3788/OPE.20192712.2571.
粘滑式压电驱动平台能实现高精度的大行程运动,它由微动台和滑块组成,而微动台的低阻尼振动限制了粘滑式压电驱动平台的运动速度。为了解决这一问题,提出了一种基于主动阻尼的复合控制策略(PI-DPF-FF)。首先,对输入的锯齿波信号进行滤波,使其更平滑。接着,采用时滞位置反馈控制器来主动提高微动台的阻尼,抑制振动。选用跟踪控制器和改进型零相位误差跟踪控制器来减小跟踪误差,提高跟踪带宽。最后,在粘滑式压电驱动平台的样机上对PI-DPF-FF控制器进行了验证。实验结果表明:与常规的比例积分控制器相比,PI-DPF-FF控制器将微动台跟踪带宽由32.7 Hz提高到1 466.5 Hz。当系统输入占空比为0.2和频率为100 Hz的信号时,与常规的前馈控制器相比,PI-DPF-FF控制器将滑块角速度由3.52 mrad/s提高到9.03 mrad/s,平台运动速度有了明显的提高。
A piezo-actuated stick-slip device
which consists of a micro-motion stage and a slider
can realize long-range motions with high resolution. Induced mechanical vibrations in the micro-motion stage impose an upper bound on the speed of the piezo-actuated stick-slip device. To address this issue
this study proposes a composite control scheme with active damping. First
the saw-tooth wave signal is filtered and made smoother. Then
a delayed position feedback controller is introduced to improve the damping of the micro-motion stage and mitigate its vibrations. Both tracking and feedforward controllers are designed to reduce the tracking errors and increase the control bandwidth. Finally
the proposed controller is implemented on the prototype of a piezo-actuated stick-slip rotational device. The experimental results show that
compared to a proportional integral controller
the proposed controller improves the control bandwidth from 32.7 to 1 466.5 Hz. In addition
compared to a conventional feedforward controller
the proposed controller under a 100-Hz saw-tooth wave signal with a duty cycle of 0.2 improves the angular velocity of the slider from 3.52 to 9.03 mrad/s. The device angular speed is improved significantly.
ZHU W L, YANG X, DUAN F, et al. Design and adaptive terminal sliding mode control of a fast tool servo system for diamond machining of freeform surfaces[J]. IEEE Transactions on Industrial Electronics , 2019, 66(6): 4912-4922.
DSOUZA R D, NAVIN K P, THEODORIDIS T, et al. Design, fabrication and testing of a 2 DOF compliant flexural microgripper[J]. Microsystem Technologies , 2018, 24(9): 3867-3883.
KIM M, PARK C, JE S, et al. Real-time compensation of simultaneous errors induced by optical phase difference and substrate motion in scanning beam laser interference lithography system[J]. IEEE/ASME Transactions on Mechatronics , 2018, 23(4): 1491-1500.
WANG Y, WU S, XU L, et al. A new precise positioning method for piezoelectric scanner of AFM[J]. Ultramicroscopy , 2019, 196: 67-73.
XU S, ZHU X, DONG Z, et al. Nonlinear modeling and analysis of compliant mechanisms with circular flexure hinges based on quadrature beam elements[J] . Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science , 2019, 233(9): 3277-3285.
CHOI K B, LEE J J, KIM G H, et al. Amplification ratio analysis of a bridge-type mechanical amplification mechanism based on a fully compliant model[J]. Mechanism and Machine Theory , 2018, 121: 355-372.
王金鹏, 金家楣, 赵淳生.用于精密定位平台的直线超声电机的异步并联[J].光学 精密工程, 2011, 19(11):2693-2702.
WANG J P, JIN J M, ZHAO CH SH. Asynchronous bundling of linear ultrasonic motor for precision positioning stage[J]. Opt. Precision Eng. , 2011, 19(11): 2693-2702. (in Chinese)
胡俊峰, 杨展宏.尺蠖式直线微驱动器的设计[J].光学 精密工程, 2018, 26(1):122-131.
HU J F, YANG ZH H. A novel inchworm linear micro actuator[J]. Opt. Precision Eng. , 2018, 26(1): 122-131. (in China)
LIU J, LIU Y, ZHAO L, et al. Design and experiments of a single-foot linear piezoelectric actuator operated in a stepping mode[J]. IEEE Transactions on Industrial Electronics , 2018, 65(10): 8063-8071.
时运来, 娄成树, 张军, 等.粘滑驱动式小型精密运动平台[J].光学 精密工程, 2018, 26(5):1124-1132.
SHI Y L, LOU CH SH, ZHANG J, et al. Small precision motion of platform based on stick-slip driving principle[J]. Opt. Precision Eng. , 2018, 26(5): 1124-1132. (in Chinese)
HANG S, LIU J, DENG J, et al. Development of a novel two-DOF pointing mechanism using a bending-bending hybrid piezoelectric actuator[J]. IEEE Transactions on Industrial Electronics , 2018, 66(10):7861-7872.
OUBELLIL R, VODA A, BOUDAOUD M, et al. Mixed stepping/scanning mode control of stick-slip SEM-integrated nano-robotic systems[J]. Sensors and Actuators, A: Physical , 2019, 285: 258-268.
MISHAKOV G V, DEMIKHOV E I, SHARKOV A V. Inertial motor on a single piezoelectric actuator for a low-temperature near-field scanning optical microscope[J]. Review of Scientific Instruments , 2019, 90(1): 016103.
WANG S, RONG W, WANG L, et al. A survey of piezoelectric actuators with long working stroke in recent years: Classifications, principles, connections and distinctions[J]. Mechanical Systems and Signal Processing , 2019, 123: 591-605.
BOUDAOUD M, LU T, LIANG S, et al. A voltage/frequency modeling for a multi-DOFs serial nanorobotic system based on piezoelectric inertial actuators[J]. IEEE/ASME Transactions on Mechatronics , 2018, 23(6): 2814-2824.
LIU Y F, LI J, HU X H, et al. Modeling and control of piezoelectric inertia-friction actuators: Review and future research directions[J]. Mechanical Sciences , 2015, 6(2): 95-107.
BERGANDER A, BREGUET J M. Performance improvements for stick-slip positioners[C]. Proceedings of 2003 International Symposium on Micromechatronics and Human Science , 2003, 59-66.
ZOU Q, GIESSEN C V, GARBINI J, et al. Precision tracking of driving wave forms for inertial reaction devices[J]. Review of Scientific Instruments , 2005, 76(2): 23701-23711.
YONG Y K, MOHEIMANI S O R, KENTON B J, et al. Invited review article: High-speed flexure-guided nanopositioning: mechanical design and control issues[J]. Review of Scientific Instruments , 2012, 83(12): 121101.
CHAO S H, GARBINI J L, DOUGHERTY W M, et al. The design and control of a three-dimensional piezoceramic tube scanner with an inertial slider[J]. Review of Scientific Instruments , 2006, 77(6): 063710.
CHEN Z, CHEN G, ZHANG X. Damped leaf flexure hinge[J]. Review of Scientific Instruments , 2015, 86(5): 055002.
CHEN Z, JIANG X, ZHANG X. Damped circular hinge with integrated comb-like substructures[J]. Precision Engineering , 2018, 53: 212-220.
SPILLER M, HURáK Z. Hybrid charge control for stick-slip piezoelectric actuators[J]. Mechatronics , 2011, 21(1): 100-108.
CHENG L, LIU W, YANG C, et al. A neural-network based controller for piezoelectric-actuated stick-slip devices[J]. IEEE Transactions on Industrial Electronics , 2018, 65(3): 2598-2607.
ZHU X, WEN Z, CHEN G, et al. A decoupled flexure-based rotational micropositioning stage with compact size[J] . Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science , 2018, 232(22): 4167-4179.
HUNSTIG M, HEMSEL T, SEXTRO W. Stick-slip and slip-slip operation of piezoelectric inertia drives-Part Ⅱ: Frequency-limited excitation[J]. Sensors and Actuators, A: Physical , 2013, 200: 79-89.
ZESCH W. Multi-degree-of-freedom Micropositioning using Stepping Principles [D]. Zurich: Swiss Federal Institute of Technology, 1997.
YANG M J, NIU J B, LI C X, et al. High-bandwidth control of nanopositioning stages via an inner-loop delayed position feedback[J]. IEEE Transactions on Automation Science & Engineering , 2015, 12(4): 1357-1368.
WEN Z, DING Y, LIU P, et al. Direct integration method for time-delayed control of second-order dynamic systems[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME , 2017, 139(6): 061001.
SCHMITT L M. Theory of genetic algorithms[J]. Theoretical Computer Science , 2001, 259(1-2): 1-61.
TIAN L, WU J, XIONG Z, et al. Precise motion control of piezoelectric actuators using modified ZPETC-based composite controller[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics , 2014: 967-972.
TAN N, KAYA I, ATHERTON D P. A graphical method for computation of all stabilizing PI controllers[C]. In Proc. 16th IFAC World Congr. , Czech Republic , Europe , 2005, 16: 349-354.
0
浏览量
119
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构