浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.中国科学院 大学材料与光电研究中心, 北京 100049
[ "徐振邦(1982-),男,内蒙古通辽人,研究员,2005年、2010年于中国科学技术大学分别获得学士、博士学位,主要从事空间智能机器人、空间遥感器设计、振动控制方面的研究。E-mail:xuzhenbang@gmail.com" ]
贺帅 (1989-),男,助理研究员,2011年于中国科学技术大学获得学士学位,2014年于中国科学院大学长春光学精密机械与物理研究所获得硕士学位,主要从事空间遥感器的力学分析、机器人的运动学和动力学等方面的研究。E-mail:652740868@qq.com HE Shuai, 652740868@qq.com
收稿日期:2019-05-08,
录用日期:2019-7-2,
纸质出版日期:2019-12-25
移动端阅览
徐振邦, 朱德勇, 贺帅, 等. 空间微振动模拟平台优化[J]. 光学精密工程, 2019,27(12):2590-2601.
Zhen-bang XU, De-yong ZHU, Shuai HE, et al. Optimization of spatial micro-vibration simulation platform[J]. Optics and precision engineering, 2019, 27(12): 2590-2601.
徐振邦, 朱德勇, 贺帅, 等. 空间微振动模拟平台优化[J]. 光学精密工程, 2019,27(12):2590-2601. DOI: 10.3788/OPE.20192712.2590.
Zhen-bang XU, De-yong ZHU, Shuai HE, et al. Optimization of spatial micro-vibration simulation platform[J]. Optics and precision engineering, 2019, 27(12): 2590-2601. DOI: 10.3788/OPE.20192712.2590.
为了解决在轨光学载荷地面试验振源模拟难的问题,设计了一种基于并联机构的多维微振动模拟平台,能够有效复现空间微振动分布频率宽、振动量级小的特点。首先,利用虚功原理和牛顿-欧拉方程推导了系统固有频率解析式,并结合设计指标进行构型优化。然后根据最优构型进行结构设计和优化,使得平台固有频率满足5~250 Hz的模拟带宽。最后,提出了一种基于传递函数的控制方法,验证了其正确性并对平台工作能力进行了求解。平台第6阶基频3.4 Hz,第7阶基频356 Hz,满足带宽要求;通过传递函数控制得到的输出与目标值之间最大误差为1.54%,说明该方法适用于平台的控制;上平台输出最大平动加速度为399.3 m
g
,最大角度扰动为1 979.3 μrad,满足指标要求。该平台具有模拟带宽大、高承载、振动量级小的特点,能够作为空间微振动地面试验振源模拟设备。
In order to solve the problem of in-orbit optical load ground test vibration source simulation
a multi-dimensional micro-vibration simulation platform based on a parallel mechanism was designed
which can effectively reproduce the characteristics of spatial micro-vibration distribution frequencies and small vibration levels. Firstly
the virtual frequency principle and the Newton-Eulerian equation were used to derive the analytical formula for the natural frequency of the system. This was combined with the design index to optimize the configuration
and the structural design was configured based on this
so that the natural frequency satisfied the analog bandwidth of 5-250 Hz. Finally
a control method based on transfer function was proposed
which verified its correctness and solved the working ability of the platform. The fundamental frequency corresponding to the sixth stage of the platform was observed to be 3.4 Hz
and the fundamental frequency corresponding to the seventh order was observed to be 356 Hz
which satisfied the bandwidth requirement. The maximum error between the output and the target value obtained via the transfer function control is 1.54%
which indicates that the method is suitable for platform control. The maximum translational acceleration of the upper platform is observed to be 399.3 m
g
and the maximum angular disturbance is detected to be 1 979.3 μrad
which meets the requirements of the index. The platform exhibits large analog bandwidth
high load capacity
and small vibration levels. It can be used as space micro-vibration ground test vibration source simulation equipment.
孟光, 周徐斌.卫星微振动及控制技术进展[J].航空学报, 2014, 36(8):2609-2619.
MENG G, ZHOU X B. Progress in satellite microvibration and control technology[J]. Journal of Aeronautics , 2014, 36(8): 2609-2619.(in Chinese)
耿文豹, 翟林培, 丁亚林.振动对光学成像系统传递函数影响的分析[J].光学 精密工程, 2009, 17(2):314-320.
ZHAI W B, ZHAI L P, DING Y L. Analysis of the influence of vibration on the transfer function of optical imaging system[J]. Opt.Precision Eng. , 2009, 17(2): 314-320.(in Chinese)
杨剑锋, 徐振邦, 刘宏伟, 等.光学有效载荷在轨隔振器的设计[J].光学 精密工程, 2014, 22(12):3294-3302.
YANG J F, XU ZH B, LIU H W, et al. Design of optical payload on-orbit isolation device[J]. Opt.Precision Eng. , 2014, 22(12): 3294-3302.(in Chinese)
HOSTENS I, ANTHONIS J, KENNES P, et al. Six-degrees-of-freedom test rig design for simulation of mobile agricultural machinery mbrations[J]. Journal of agricultural Engineering Research, 2000, 77(2): 155-169.
HOSTENS I, ANTHONIS J, RAMON H. New design for a 6 def vibration simulator with improved reliability and performance[J]. Mechanical Systems and Signal Processing, 2005, 19(1):105-122.
PARK G, LEE D O, HAN J H, et al. Development of Multi-DOF active microvibration emulator[C]. ASME Conference on Smart Materials, 2012, 477-483.
PARK G, LEE D O, HAN J H. Development of multi-degree-of-freedom microvibration emulator for efficient fitter test of spacecraft[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(9): 1069-1081.
VOSE T H, UMBANHOWAR P, LYNCH K M. Friction-induced velocity fields for point parts sliding on a rigid oscillated plate[J]. International Journal of Robotics Research, 28(8): 1020-1039.
VOSE T H, TURPIN M H, DAMES P M, et al. Modeling, design, and control of 6-DoF flexure-based parallel mechanisms for vibratory manipulation[J]. Mechanism and Machine Theory, 2013, 64: 111-130.
辛建.基于六维并联机构的空间多维微振动模拟器优化设计[D].长春: 长春光学精密机械与物理研究所, 2015. http://cdmd.cnki.com.cn/Article/CDMD-80139-1016003491.htm
XIN J. Optimization Design of Spatial Multi-dimensional Microvibration Simulator Based on Six-dimensional Parallel Mechanism [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, 2015.(in Chinese)
BEECH G S, RAO N N S, RUPERT J K, et al. A "Kane's Dynamics" model for the active rack isolation system[J]. National Aeronautics and Space Administration , 2001, 5:20010067152.
YAO Z, JINGRUI Z, SHIJIE X. Parameters design of vibration isolation platform for control moment gyroscopes[J]. Acta Astronautica , 2012, 81(2): 645-659.
AFROUN M, DEQUIDT A, VERMEIREN L. Revisiting the inverse dynamics of the Gough-Stewart platform manipulator with special emphasis on universal-prismatic-spherical leg and internal singularity[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226(10): 2422-2439.
OFTADEH R, AREF M M, TAGHIRAD H D. Explicit dynamics formulation of stewart gough platform a newton-euler approach[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems , 2010: 2772-2777.
LIU M J, LI C X, LI CH N.Dynamics analysis of the Gough-Stewart platform manipulator[J]. IEEE Journal of Robotics and Automation , 2000, 16(1): 94-98.
GUO H B, LI H R.Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(1): 61-72.
YUN Y, LI Y M.Active vibration control based on a 3-DOF dual compliant parallel robot using LQR algorithm[J]. The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009: 775-780.
ZHANG C D, SONG S M. An efficient method for inverse dynamics of manipulators based on the virtual work principle[J]. Journal of Robotic Systems , 1993, 10(5): 605-627.
ZHAO Y, GAO F. Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work[J]. Robotica , 2009, 27(2): 259-268.
LOPES A M, PIRES E J S. Complete Dynamic Modeling of a Stewart Platform Using the Generalized Momentum Approach [M].Netherlands:Springer, 2011: 199-210.
GALLARDO J, RICO J M, FRISOLI A, et al. Dynamics of parallel manipulators by means of screw theory[J]. Mechanism and Machine Theory , 2003, 38(11): 1113-1131.
0
浏览量
78
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构