浏览全部资源
扫码关注微信
1.中国科学院 电子学研究所传感技术国家重点实验室,北京 100190
2.中国科学院大学,北京 100049
[ "蔡浩原(1977-),男,博士,研究员,1998年于清华大学获得学士学位,2003年于中国科学院电子学研究所获得博士学位,主要研究方向为MEMS传感器及其微系统、无线工业物联网传感器和移动机器人室内导航。E-mail:hycai@mail.ie.ac.cn" ]
收稿日期:2019-06-11,
录用日期:2019-8-12,
纸质出版日期:2019-12-25
移动端阅览
蔡浩原, 李文宽, 赵晟霖, 等. 陀螺仪补偿的实时EKF磁场校准[J]. 光学精密工程, 2019,27(12):2650-2658.
Hao-yuan CAI, Wen-kuan LI, Sheng-lin ZHAO, et al. Gyro-compensated real-time EKF magnetic field calibration method[J]. Optics and precision engineering, 2019, 27(12): 2650-2658.
蔡浩原, 李文宽, 赵晟霖, 等. 陀螺仪补偿的实时EKF磁场校准[J]. 光学精密工程, 2019,27(12):2650-2658. DOI: 10.3788/OPE.20192712.2650.
Hao-yuan CAI, Wen-kuan LI, Sheng-lin ZHAO, et al. Gyro-compensated real-time EKF magnetic field calibration method[J]. Optics and precision engineering, 2019, 27(12): 2650-2658. DOI: 10.3788/OPE.20192712.2650.
磁场信息对于确定航向角和姿态信息有着至关重要的作用,但其极易受到周围铁磁性物质的干扰,而传统用于磁场校准的椭球拟合算法对磁力计数据的质量要求较高,对于客户的使用并不友好。本文在实现了一种使用更便捷,精度更高的实时磁场校准。首先,根据角速度和磁场物理关系,推导使用陀螺仪数据递推得到磁力计数据的状态转移方程,并把磁力计的测量作为量测方程,结合扩展卡尔曼滤波算法完成陀螺仪补偿的实时EKF磁场校准算法。然后,在手机中实时调取磁力计和陀螺仪数据,对二者进行实时EKF磁场校准运算并输出校准结果,之后与未校准数据和椭球拟合算法校准数据进行比较。在对比实验中:当外部磁场环境改变时,陀螺仪补偿算法不仅能够实现实时校准,并且在2 s以内就可以完成对磁力计数据的校准。在校准精度方面,当手机静置时,EKF算法可以实时减少磁场干扰,校准的质量参数
Q
为0.72;手机绕“8”字运动时,校准的质量参数
Q
为0.53,优于椭球拟合算法的0.03。模拟手机日常活动的四个情境时,质量参数
Q
分别为0.73
0.54
0.52和0.48,而这些情况下椭球拟合算法已经失去了校准作用。实验表明,基于扩展卡尔曼滤波的磁场校准方法可实时对磁场干扰进行动态校准,校准速度快,精度高,抗干扰能力强,在消费类电子、车载惯导系统和军事上均具有广泛应用。
Magnetic field information plays an important role in determining the heading angle and attitude information
but it is highly susceptible to interference from surrounding ferromagnetic materials. The traditional ellipsoid fitting algorithm for magnetic field calibration requires high quality magnetometer data
which is not customer-friendly. This paper implemented a more convenient and accurate real-time magnetic field calibration using a smartphone-based platform. Firstly
according to the physical relationship between angular velocity and magnetic field
the state transition equation of magnetometer data was derived by using the gyro data recursively. The magnetometer measurements were used in the measurement equation
and the extended Kalman filter algorithm was used to complete the real-time EKF magnetic field compensated by the gyroscope. Then
the data from the magnetometer and the gyroscope were retrieved in real time on the mobile phone
and a real-time EKF magnetic field calibration operation was performed on the two
producing the calibration result as the output.It was then compared with the uncalibrated data and the calibration data obtained via the ellipsoid fitting algorithm.During the comparison experiment
the gyroscope compensation algorithm can not only achieve real-time calibration with any change to the external magnetic field environment
but can also complete the calibration of the magnetometer data within 2 s. In terms of calibration accuracy
when the mobile phone is stationary
the EKF algorithm can reduce the magnetic field interference in real time
with the value of the quality parameter
Q
of the calibration being 0.72.When the mobile phone is wound around "8"
the quality parameter
Q
of the calibration is observed to be 0.53
which is better than 0.03 - its value for the ellipsoid fitting algorithm. When four scenarios of daily activities on the mobile phone are simulated
the quality parameters
Q
obtained are 0.73
0.54
0.52
and 0.48
respectively
and in these cases
the ellipsoid fitting algorithm is observed to be incapableof calibration. Thus
real-time
high-precision
easy-to-use magnetic field calibration is achieved. Experimental testsdemonstrate that the magnetic field calibration method based on extended Kalman filter can dynamically calibrate magnetic field interference in real time. Its calibration speed is fast
its precision is high
and its anti-interference ability is adequate. Therefore
it has a wide range of applications in consumer electronics
vehicle inertial navigation systems
and the military.
刘公绪, 史凌峰.室内导航与定位技术发展综述[J].导航定位学报, 2018, 6(2):7-14.
LIU G X, SHI L F. An overview about development of indoor navigation and positioning technology [J]. Journal of Navigation and Positioning , 2018, 6(2): 7-14. (in Chinese)
潘献飞, 穆华, 胡小平.单兵自主导航技术发展综述[J].导航定位与授时, 2018, 5(1):1-11.
PAN X F, MU H, HU X P. A survey of autonomous navigation technology for individual solder [J]. Navigation Positioning and Timing , 2018, 5(1): 1-11. (in Chinese)
裴凌, 刘东辉, 钱久超.室内定位技术与应用综述[J].导航定位与授时, 2017, 4(3):1-10.
PEI L, LIU D H, QIAN J C. A survey of indoor positioning technology and application [J]. Navigation Positioning and Timing , 2017, 4(3): 1-10. (in Chinese)
王勇军, 李智, 李翔.采用组合滤波算法的无人机航向测量系统研究[J].电子技术应用, 2018, 44(2):39-43.
WANG Y J, LI ZH, LI X. Research of heading measurement for UAV based on combined filter [J]. Application of Electronic Technique , 2018, 44(2): 39-43. (in Chinese)
王璐.组合式航向系统关键技术研究[D].西安: 西北工业大学, 2007 http://cdmd.cnki.com.cn/Article/CDMD-10699-2007057829.htm
WANG L. Research on Key Technologies of Combined Heading System [D]. Xi'an: Northwestern Polytechnical University, 2007. (in Chinese)
张晓明, 赵剡.基于椭圆约束的新型载体磁场标定及补偿技术[J].仪器仪表学报, 2009, 30(11):2438-2443.
ZHANG X M, ZHAO Y. New auto-calibration and compensation method for vehicle magnetic field based on ellipse restriction [J]. Chinese Journal of Scientific Instrument , 2009, 30(11):2438-2443. (in Chinese)
周能兵, 王亚斌, 王强.地磁导航技术研究进展综述[J].导航定位学报, 2018, 6(2):15-19.
ZHOU N B, WANG Y B, WANG Q. A brief review of geomagnetic navigation technology [J]. Journal of Navigation and Positioning , 2018, 6(2): 15-19. (in Chinese)
周军, 葛致磊, 施桂国, 等.地磁导航发展与关键技术[J].宇航学报, 2008, 29(5):1467-1472.
ZHOU J, GE ZH L, SHI G G, et al .. Development and key technologies of geomagnetic navigation [J]. Journal of Astronautics , 2008, 29(5): 1467-1472. (in Chinese)
杨宾峰, 樊博宇, 胥俊敏, 等.基于最小二乘的地磁场测量误差补偿技术[J].空军工程大学学报(自然科学版), 2017, 18(6):34-39.
YANG B F, FAN B Y, XU J M, et al .. Research on error compensation in geomagnetic field measurement based on least squares [J]. Journal of Air Force Engineering University ( Natural Science Edition ), 2017, 18(6): 34-39. (in Chinese)
秦赓, 管雪元, 李文胜.基于椭球补偿的三维载体磁场误差补偿方法[J].电子测量技术, 2018, 41(2):37-40.
QIN G, GUNA X Y, LI W SH. Compensation method of magnetic field error of three dimensional vector based on ellipsoid compensation [J]. Electronic Measurement Technology , 2018, 41(2): 34-39. (in Chinese)
WU Y, PEI L.Gyroscope calibration via magnetometer [J]. IEEE Sensors Journal , 2017, 17(16): 5269-5275.
WU Y, ZOU D, LIU P, et al .. Dynamic magnetometer calibration and alignment to inertial sensors by kalman filtering [J]. IEEE Transactions on Control Systems and Technology , 2018, 26(2): 716-723.
朱建良, 王兴全, 吴盘龙, 等.基于椭球曲面拟合的三维磁罗盘误差补偿算法[J].中国惯性技术学报, 2012, 20(5):562-566.
ZHU J L, WANG X Q, WU P L, et al .. Three-dimensional magnetic compass error compensation algorithm based on ellipsoid surface fitting [J]. Journal of Chinese Inertial Technology , 2012, 20(5): 562-566. (in Chinese)
MARKOVSKY I, VAN H S. Overview of total least-squares methods [J]. Signal Processing , 2007, 87(10): 2283-2302.
SABATINI A M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing [J]. IEEE transactions on bio-medical engineering , 2006, 53(7): 1346-1356.
宋丽英.角速度和旋转矩阵导数的分析[J].甘肃工业大学学报, 1993(4):100-106.
SONG L Y. Analysis of angular velocity and rotation matrix derivative [J]. Journal of GanSu University of Technology , 1993(4):100-106. (in Chinese)
0
浏览量
219
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构