浏览全部资源
扫码关注微信
火箭军工程大学 信息工程系, 陕西 西安 710025
[ "张少磊(1992-),男,河北邢台人,博士研究生,2016年于火箭军工程大学获得硕士学位,主要从事机器视觉及遥感图像分析方面的研究。E-mail:jianjianyuanqu11@163.com" ]
[ "付光远(1966-),男,四川简阳人,教授,博士生导师,1993年于西南交通大学获得硕士学位,2004年于第二炮兵工程学院获得博士学位,主要从事图像匹配精确制导、C4I系统建模与仿真方面的研究。E-mail:dr-f@21cl.com" ]
收稿日期:2019-03-26,
录用日期:2019-5-12,
纸质出版日期:2019-12-25
移动端阅览
张少磊, 付光远, 汪洪桥, 等. 基于向量总变差约束局部光谱解混的高光谱图像超分辨[J]. 光学精密工程, 2019,27(12):2683-2692.
Shao-lei ZHANG, Guang-yuan FU, Hong-qiao WANG, et al. Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution[J]. Optics and precision engineering, 2019, 27(12): 2683-2692.
张少磊, 付光远, 汪洪桥, 等. 基于向量总变差约束局部光谱解混的高光谱图像超分辨[J]. 光学精密工程, 2019,27(12):2683-2692. DOI: 10.3788/OPE.20192712.2683.
Shao-lei ZHANG, Guang-yuan FU, Hong-qiao WANG, et al. Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution[J]. Optics and precision engineering, 2019, 27(12): 2683-2692. DOI: 10.3788/OPE.20192712.2683.
融合相同场景下低分辨率高光谱图像和高分辨率多光谱图像生成高分辨率高光谱图像是获取空间域和光谱域的综合场景信息一种重要方法。为充分利用图像的光谱信息和空间信息,提出了向量总变差正则的局部光谱解混的高光谱图像超分辨方法。本文基于耦合狄利克雷自编码分别从高光谱图像和多光谱图像提取光谱特征和对应的空间信息。耦合网络的解码部分能有效地保留光谱特征,集成局部低秩约束和向量总变差约束的正则项可以充分利用多光谱图像空间结构信息从而提取稳定的丰度矩阵,最小化角相似性可以有效减少光谱失真,最后通过端元和丰度的线性组合生成高分辨率的高光谱图像。实验表明,在CAVE和Harvard数据集上重构误差分别达到3.78和1.66,光谱角映射分别为6.57和3.03,较其他方法有明显提高。本文方法能充分利用图像的空间性质,具有更好的高光谱图像超分辨效果。
Fusing a low-resolution Hyperspectral Image (HSI)with its corresponding high-resolution Multispectral Image (MSI) to obtain a high-resolution HSI is amajortechnique for capturing comprehensive scene information in both spatial and spectral domains. To exploit fully the spectral and spatial information of an image
an algorithm based on total-variation-regularized local spectral unmixing for HSI super-resolution was proposed in this study. Spectral features and corresponding spatial information were extracted from both HSIs and MSIs through coupled encode-decode networks
respectively. The decoder of the coupled network could effectively preserve spectral features
and regular terms integrating local low-rank and vector total variation constraints could make full use of spatial structure information in MSIs to extract a stable abundance matrix.Finally
the angular differences between representations were minimized to reduce the spectral distortion.Experimental results reveal that the reconstruction errors in CAVE and Harvard datasets reach 3.78 and 1.66
respectively
and the spectral angle maps are 6.57 and 3.03
respectively
thus outperforming the state-of-the-art methods. The proposed algorithm can make full use of the spatial properties and thus produces a better HIS super-resolution effect.
张倩颖, 谢晓振.加权Schatten范数低秩表示的高光谱图像恢复[J].光学 精密工程, 2019, 27(2): 421-432.
ZHANG Q Y, XIE X ZH. Hyperspectral image restoration via weighted Schatten norm low-rank representation[J]. Opt.Precision Eng. , 2019, 27(2): 421-432. (in Chinese)
王庆超, 付光远, 汪洪桥, 等.多核融合多尺度特征的高光谱影像地物分类[J].光学 精密工程, 2018, 26(4): 980-988.
WANG Q CH, FU G Y, WANG H Q, et al .. Fusion of multi-scale feature using multiple kernel learning for hyperspectral image land cover classification[J]. Opt.Precision Eng. , 2018, 26(4): 980-988. (in Chinese)
黄鸿, 陈美利, 段宇乐, 等.空-谱协同流形重构的高光谱影像分类[J].光学 精密工程, 2018, 26(7): 1827-1836.
HUANG H, CHEN M L, DUAN Y L, et al .. Hyper-spectral image classification using spatial-spectral manifold reconstruction[J]. Opt.Precision Eng. , 2018, 26(7): 1827-1836. (in Chinese)
CHUN H Z, LI L Z. Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection[J]. Infrared Physics & Technology, 2018, 92:166-176.
UZKENT B. Real-time vehicle tracking in aerial video using hyperspectral features[C]. Computer Vision and Pattern Recognition Workshops. IEEE , 2016.
谭熊, 余旭初, 张鹏强, 等.基于多核支持向量机的高光谱影像非线性混合像元分解[J].光学 精密工程, 2014, 22(7): 1912-1920.
TAN X, YU X CH, ZHANG P Q, et al .. Nonlinear mixed pixel decomposition of hyperspectral imagery based on multiple kernel SVM[J]. Opt.Precision Eng. , 2014, 22(7): 1912-1920. (in Chinese)
KAWAKAMI R, WRIGHT J, TAI Y W, et al .. High-resolution hyperspectral imaging via matrix factorization[C]. Computer Vision and Pattern Recognition(CVPR) , 2011.
YOKOYA N, YAIRI T, IWASAKI A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion[J]. IEEE Transactions on Geoscience and Remote Sensing , 2012, 50(2): 528-537.
AKHTAR N, SHAFAIT F, MIAN A. Sparse spatio-spectral representation for hyperspectral image super-resolution[C]. European Conference on Computer Vision. Springer , Cham, 2014.
WEI Q, DOBIGEON N, TOURNERET J Y. Bayesian fusion of hyperspectral and multispectral images[C]. IEEE International Conference on Acoustics. IEEE , 2014.
AKHTAR N, SHAFAIT F, MIAN A. Bayesian sparse representation for hyperspectral image super resolution[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2015: 3631-3640.
LANARAS C, BALTSAVIAS E, SCHINDLER K. Hyperspectral super-resolution by coupled spectral unmixing[C]. Proceedings of the IEEE International Conference on Computer Vision , 2015: 3586-3594.
DIAN R, FANG L, LI S. Hyperspectral image super-resolution via non-local sparse tensor factorization[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2017: 5344-5353.
AIAZZI B, BARONTI S, SELVA M. Improving component substitution pansharpening through multivariate regression of MS + Pan data[J]. IEEE Transactions on Geoscience and Remote Sensing , 2007, 45(10): 3230-3239.
LIU J G. Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details[J]. International Journal of Remote Sensing , 2000, 21(18): 3461-3472.
AIAZZI B, ALPARONE L, BARONTI S, et al .. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering & Remote Sensing , 2006, 72(5): 591-596.
DONG W, FU F, SHI G, et al .. Hyperspectral image super-resolution via non-negative structured sparse representation[J]. IEEE Transactions on Image Processing , 2016, 25(5): 2337-2352.
HUANG W, XIAO L, WEI Z, et al .. A new pan-sharpening method with deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters , 2015, 12(5): 1037-1041.
PALSSON F, SVEINSSON J R, ULFARSSON M O. Multispectral and hyperspectral image fusion using a 3-D-convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters , 2017, 14(5): 639-643.
DIAN R, LI S, GUO A, et al . Deep hyperspectral image sharpening[J]. IEEE transactions on neural networks and learning systems , 2018 (99): 1-11.
QU Y, QI H, KWAN C. Unsupervised sparse Dirichlet-net for hyperspectral image super-resolution[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2018: 2511-2520.
BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al .. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[J]. IEEE journal of selected topics in applied earth observations and remote sensing , 2012, 5(2): 354-379.
ZHAO X L, WANG F, HUANG T Z, et al .. Deblurring and sparse unmixing for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing , 2013, 51(7): 4045-4058.
LIAO W, GOOSSENS B, AELTERMAN J, et al .. Hyperspectral image deblurring with PCA and total variation[C]. 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE , 2013: 1-4.
BRESSON X, CHAN T F. Fast dual minimization of the vectorial total variation norm and applications to color image processing[J]. Inverse Problems and Imaging , 2008, 2(4): 455-484.
YASUMA F, MITSUNAGA T, ISO D, et al .. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum[J] . IEEE Transactions on Image Processing , 2010, 19(9): 2241-2253.
CHAKRABARTI A, ZICKLER T. Statistics of real-world hyperspectral images[C]. CVPR 2011. IEEE , 2011: 193-200.
0
浏览量
150
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构