浏览全部资源
扫码关注微信
上海海事大学 电气自动化系, 上海 201306
[ "冯肖维(1982-),男,上海人,博士,讲师,2004年、2007年、2011年于上海大学分别获得学士、硕士、博士学位,主要从事非线性系统控制、机器人技术、机器视觉等方面的研究。E-mail:xwfeng1982@163.com" ]
[ "姜晨(1995-),男,江苏盐城人,硕士研究生,2017年于南京航空航天大学金城学院获得学士学位,主要研究方向为图像处理与智能传感器等。E-mail:964533216@qq.com" ]
收稿日期:2019-04-23,
录用日期:2019-6-18,
纸质出版日期:2019-12-25
移动端阅览
冯肖维, 姜晨, 何敏, 等. 三维距离图像基于特征估计的自适应平滑[J]. 光学精密工程, 2019,27(12):2693-2701.
Xiao-wei FENG, Chen JIANG, Ming HE, et al. Adaptive smoothing for three-dimensional range image based on feature estimation[J]. Optics and precision engineering, 2019, 27(12): 2693-2701.
冯肖维, 姜晨, 何敏, 等. 三维距离图像基于特征估计的自适应平滑[J]. 光学精密工程, 2019,27(12):2693-2701. DOI: 10.3788/OPE.20192712.2693.
Xiao-wei FENG, Chen JIANG, Ming HE, et al. Adaptive smoothing for three-dimensional range image based on feature estimation[J]. Optics and precision engineering, 2019, 27(12): 2693-2701. DOI: 10.3788/OPE.20192712.2693.
为了抑制激光测距仪采集3维距离图像的噪声与畸变,提出了一种各向异性自适应平滑去噪方法。该方法集成了随机信号处理和尺度空间表述技术,根据邻域点构建特征估计模型,对距离图像中局部区域内测量点间的流形拓扑关系进行预测,并利用无嗅采样技术计算原始图像和估计模型间的马氏距离作为相似性测度构建卷积滤波核,实现三维距离图像各向异性扩散平滑去噪。通过该方法能够有效抑制原始图像发生的变形或偏移,在抑制噪声的同时突出主要特征。试验结果表明:在噪声方差为4.0×10
-4
m
2
时,经自适应平滑处理后的图像的峰值信噪比增益达16.41 dB,均方误差减小66.16%。本文方法能够有效提高三维距离图像的质量,为基于激光测距仪的三维环境感知与测量建模提供技术支撑。
To reduce noise and distortion of a 3D range image obtained from a laser rangefinder
an anisotropic adaptive smoothing method was introduced. The method consisted of stochastic signal estimation and scale-space representation. A feature estimation model was then derived from neighboring pointsand was used to predict the manifold topological relations between those neighboring points. To achieve anisotropic diffusion smoothing
the Mahalanobis distance between the original image and the estimated model was calculated asa similarity measure
which could then be usedtoconstruct a convolution kernel. This method enabled the distortion of the original image to be effectively corrected and noise to be suppressed.It also made the main imagefeatures more apparent. Experimental results indicate that the peak signal-to-noise ratiogain of the adaptive algorithm reached 16.41 dB
and the mean square error was reduced to 66.16% when the noise variance was 4.0×10
-4
m
2
. Our smoothing method can thus improve the quality of noisy 3D range imagesand can provide technical support for 3D sensing and measurement modeling based on laser rangefinders.
李小路, 曾晶晶, 王皓, 等.三维扫描激光雷达系统设计及实时成像技术[J].红外与激光工程, 2019, 48(5): 35-42.
LI X L, ZENG J J, WANG H, et al .. Design and real-time imaging technology of three-dimensional scanning LiDAR[J]. Infrared and Laser Engineering , 2019, 48(5): 35-42. (in Chinese)
HAN X F, JIN J S, WANG M J, et al .. A review of algorithms for filtering the 3D point cloud[J]. Signal Processing Image Communication , 2017, 57(11): 103-112.
SUN X F, ROSIN P L, MARTIN R R, et al .. Fast and effective feature-preserving mesh denoising[J]. IEEE Transactions on Visualization and Computer Graphics , 2007, 13(5): 925-938.
JONES T R, DURAND F, DESBRUN M. Non-iterative, feature-preserving mesh smoothing[J]. ACM Transactions on Graphics , 2003, 22(3): 943-949.
SCHALL O, BELYAEV A, SEIDEL H P. Adaptive feature-preserving non-local denoising of static and time-varying range data[J]. Computer-Aided Design , 2008, 40 (6): 701-707.
ZHENG Y, FU H B, AU O K C, et al .. Bilateral normal filtering for mesh denoising[J]. IEEE Transactions on Visualization and Computer Graphics , 2011, 17(10): 1521-1530.
WANG Y, FENG H Y, DELORME F E, et al .. An adaptive normal estimation method for scanned point clouds with sharp features[J]. Computer-Aided Design , 2013, 45(11): 1333-1348.
GU X. A filtering algorithm for scattered point cloud based on curvature features classification[J]. Journal of Information & Computational Science , 2015, 12(2): 525-532.
FLEISHMAN S, DRORI I, COHEN-OR D. Bilateral mesh denoising[J]. ACM Transactions on Graphics , 2003, 22(3): 950-953.
ZHANG W Y, DENG B L, ZHANG J Y, et al .. Guided mesh normal filtering[J]. Computer Graphics Forum , 2015, 34(7): 23-34.
ADAMS M, TANG F, WIJESOMA W S, et al .. Convergent smoothing and segmentation of noisy range data in multiscale space[J]. IEEE Transactions on Robotics , 2008, 24(3): 746-753.
邹永宁, 姚功杰.自适应窗口形状的中值滤波[J].光学 精密工程, 2018, 26(12):161-172.
ZOU Y N, YAO G J. Median filtering algorithm for adaptive window shape[J]. Opt.Precision Eng. , 2018, 26(12): 161-172. (in Chinese)
冯肖维, 何永义, 方明伦, 等.应用特征估计的距离图像多尺度滤波[J].光学 精密工程, 2011, 19(5): 1118-1125.
FENG X W, HE Y Y, FANG M L, et al .. Multi-scale smoothing for noisy range image using feature estimation[J]. Opt.Precision Eng. , 2011.19(5): 1118-1125. (in Chinese)
PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1990, 12(7): 629-639.
JULIER S J. The scaled unscented transformation[C]. Proceedings of the American Control Conference , Anchorage, USA, 2002: 4555-4559.
李明磊, 李广云, 王力, 等.采用八叉树体素生长的点云平面提取[J].光学 精密工程, 2018, 26(1): 172-183.
LI M L, LI G Y, WANG L, et al .. Planar feature extraction from unorganized point clouds using octree voxel-based region growing[J]. Opt.Precision Eng. , 2018, 26(1): 172-183. (in Chinese)
XIAO B, BIROS G. Parallel algorithms for nearest neighbor search problems in high dimensions[J]. Siam Journal on Scientific Computing , 2016, 38(5): S667-S699.
0
浏览量
105
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构