浏览全部资源
扫码关注微信
1.天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室, 天津 300072
2.北京华科创智健康科技股份有限公司, 北京 100195
[ "陈晓冬(1975-),男,浙江人,研究生学历,教授,博士生导师,1996年于天津大学获得学士学位,2002年于天津大学获得博士学位,现为天津大学精密仪器与光电子工程学院学院教授,主要从事光电成像与检测技术方向的研究。E-mail:xdchen@tju.edu.cn" ]
[ "吉佳瑞(1994-),女,河南人,学生,2017年于天津大学获得学士学位,现为天津大学精密仪器与光电子工程学院硕士研究生,主要从事超声内镜图像处理的研究。E-mail: jijiarui@tju.edu.cn" ]
收稿日期:2019-06-19,
录用日期:2019-8-11,
纸质出版日期:2020-01-15
移动端阅览
陈晓冬, 吉佳瑞, 盛婧, 等. 分数阶微分加权引导滤波对超声图像的纹理保持[J]. 光学 精密工程, 2020,28(1):174-181.
Xiao-dong CHEN, Jia-rui JI, Jing SHENG, et al. Fractional differential weighted guided filtering for image texture preservation for medical ultrasound[J]. Optics and precision engineering, 2020, 28(1): 174-181.
陈晓冬, 吉佳瑞, 盛婧, 等. 分数阶微分加权引导滤波对超声图像的纹理保持[J]. 光学 精密工程, 2020,28(1):174-181. DOI: 10.3788/OPE.20202801.0174.
Xiao-dong CHEN, Jia-rui JI, Jing SHENG, et al. Fractional differential weighted guided filtering for image texture preservation for medical ultrasound[J]. Optics and precision engineering, 2020, 28(1): 174-181. DOI: 10.3788/OPE.20202801.0174.
医学超声图像是医生诊断人体组织病变的重要依据,而医学超声图像中固有的散斑噪声易造成纹理信息的破坏,影响医生对组织器官的判断,因此,医学超声图像的去噪处理倍受关注。针对目前医学超声图像去噪算法无法保持图像纹理这一局限性,本文提出分数阶微分加权的引导滤波算法。算法首先通过对数变换,将难以去除的散斑噪声转换为加性噪声;再结合分数阶微分算法,根据像素与边缘纹理的相关性设计纹理因子,并使用该纹理因子改进引导滤波方法;最后,通过改进的引导滤波器生成医学超声图像的处理结果。本文对猪胃和猪气管超声图像进行了算法实验,实验结果表明,本文算法相较于经典引导滤波算法,其结构一致性因子提升20.1%,无参考图像锐化因子提升3.3%,能够在去除散斑噪声的同时有效保留图像边缘纹理结构,对于医学超声图像具有良好的适用性。
Medical ultrasound image is an important basis for doctors to diagnose human tissue lesions. The speckle noise inherent in medical ultrasound images is easy to cause the destruction of texture information
which affects the doctor′s judgment on tissues and organs. Therefore
the denoising process of medical ultrasonic images has attracted much attention. In view of the limitation that the current medical ultrasound image denoising algorithm cannot maintain image texture
a fractional differential weighted guided filtering algorithm was proposed. Firstly
the speckle noise was converted into additive noise by logarithmic transformation. Combined with fractional differential algorithm
the texture factor was designed according to the correlation between pixel and edge texture
and the texture factor was used to improve the guided image filtering. Finally
the processing result of the medical ultrasound image was generated by the improved guided image filtering. In this paper
the ultrasound images of pig stomach and pig trachea were tested. Experimental results indicate that compared with the guided image filtering
the proposed method respectively gets 20.1% and 3.3% advancement for Structural Similarity Index Measurement and Cumulative Probability of Blur Detection. It can satisfy the proposed algorithm can effectively preserve the edge texture structure of the image while removing speckle noise.
吴俊, 汪源源, 陈悦等.基于同质区域自动选取的各向异性扩散超声图像去噪[J].光学 精密工程, 2014, 22(5): 1312-1321.
WU J, WANG Y Y, CHEN Y, et al .. Speckle reduction of ultrasound images with anisotropic diffusion based on homogeneous region automatic selection[J]. Opt. Precision Eng ., 2014, 22(5): 1312-1321. (in Chinese)
DEI K, BYRAM B. A robust method for ultrasound beamforming in the presence of off-axis clutter and sound speed variation[J] . Ultrasonics , 2018, 89: 34-45.
WANG Y G, ZHENG C C, PENG H, et al .. An adaptive beamforming method for ultrasound imaging based on the mean-to-standard-deviation factor[J]. Ultrasonics , 2018, 90: 32-41.
许贤泽, 赵文成, 徐逢秋, 等.改进的各向异性扩散方程的超声图像滤波方法[J].光学 精密工程, 2017, 25(6): 1662-1668.
XU X Z, ZHAO W CH, XU F Q, et al .. Improved speckle reducing anisotropic diffusion for ultrasound image filtering[J]. Opt. Precision Eng ., 2017, 25(6): 1662-1668. (in Chinese)
KHAN A H, AL-ASAD J F, LATIF G. Speckle suppression in medical ultrasound images through Schur decomposition[J]. IET Image Processing , 2018, 12(3): 307-313.
MAFI M, TABARESTANI S, CABRERIZO M, et al .. Denoising of ultrasound images affected by combined speckle and Gaussian noise[J]. IET Image Processing , 2018, 12(12): 2346-2351.
BONNY S, CHANU Y J, SINGH K M. Speckle reduction of ultrasound medical images using Bhattacharyya distance in modified non-local mean filter[J]. Signal, Image and Video Processing , 2019, 13(2): 299-305.
IQBAL N, SALEEM S, JEHAN W, et al .. Reduction of speckle noise in medical images using stationary wavelet transform and fuzzy logic[C]. 2017 International Symposium on Recent Advances in Electrical Engineering (RAEE), October 24-26, 2017. Islamabad. New York, USA: IEEE , 2017.
LI Y L, WINETRAUB Y, LIBA O, et al .. Optimization of the trade-off between speckle reduction and axial resolution in frequency compounding[J]. IEEE Transactions on Medical Imaging , 2019, 38(1): 107-112.
张聚, 王陈, 程芸.小波与双边滤波的医学超声图像去噪[J].中国图象图形学报, 2018, 19(1):126-132.
ZHANG J, WANG CH, CHENG Y. Despeckling for medical ultrasound images based on wavelet and bilateral filter[J]. Journal of Image and Graphics , 2018, 19(1):126-132 (in Chinese).
SA-ING V, VORASAYAN P, SUWANWELA N C, et al .. Multiscale adaptive regularisation Savitzky-Golay method for speckle noise reduction in ultrasound images[J]. IET Image Processing , 2018, 12(1): 105-112.
TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]. Proc of the 6th International Conference on Computer Vision , 1998: 839-846.
HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
LI Z G, ZHENG J H, ZHU Z J, et al .. Weighted guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24(1): 120-129.
龙鹏, 鲁华祥. LoG边缘算子改进的加权引导滤波算法[J].计算机应用, 2015, 35(9):2661-2665.
LONG P, LU H. Weighted guided image filtering algorithm using Laplacian-of-Gaussian edge detector[J]. Journal of Computer Applications, 2015, 35(9):2661-2665. (in Chinese)
谢伟, 周玉钦, 游敏.融合梯度信息的改进引导滤波[J].中国图象图形学报, 2016, 21(9): 1119-1126.
XIE W, ZHOU Y Q, YOU M. Improved guided image filtering integrated with gradient information[J]. Journal of Image and Graphics , 2016, 21(9): 1119-1126. (in Chinese)
ZHUANG Z M, LEI N H, JOSEPH RAJ A N, et al .. Application of fractal theory and fuzzy enhancement in ultrasound image segmentation[J]. Medical & Biological Engineering & Computing , 2019, 57(3): 623-632.
CAO T, WANG W X. Depth image enhancement and detection on NSCT and fractional differential[J]. Wireless Personal Communications , 2018, 103(1): 1025-1035.
修春波, 李欣.融合分数阶微分边缘特征的自适应跟踪方法[J].光学 精密工程, 2019, 27(1): 241-250.
XIU CH B, LI X. Adaptive tracking method with fractional differential edge feature[J]. Opt. Precision Eng ., 2019, 27(1): 241-250. (in Chinese)
WANG Z, BOVIK A C, SHEIKH H R, et al .. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing , 2004, 13(4): 600-612.
NARVEKAR N D, KARAM L J. A No-reference image blur metric based on the cumulative probability of blur detection (CPBD)[J]. IEEE Transactions on Image Processing , 2011, 20(9): 2678-2683.
0
浏览量
357
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构