浏览全部资源
扫码关注微信
1.吉林农业大学 信息技术学院,吉林 长春 130118;
2.吉林大学 工程仿生教育部重点实验室,吉林 长春 130025;
3.吉林农业大学 工程技术学院,吉林 长春 130118
[ "刘媛媛 (1980-),女,吉林长春人,工学博士,讲师,硕士生导师,主要从事农业信息化图像和视频信号处理方面研究。E-mail:liuyuanyuan1980@126.com" ]
[ "于海业 (1963-),男,吉林长春人,教授,博士生导师,1991年于吉林工业大学获得博士学位,现任吉林大学生物与农业工程学院院长,主要从事模式识别与智能系统、生物环境与能源工程研究。E-mail:haiye@jlu.edu.cn" ]
[ "王跃勇 (1977-),通信作者,男,吉林长春人,工学博士,副教授,硕士生导师,主要从事智能系统、生物环境与能源工程研究。E-mail:yueyong10@mails.jlu.edu.cn" ]
收稿日期:2019-08-27,
录用日期:2019-10-8,
纸质出版日期:2020-01-25
移动端阅览
刘媛媛, 张硕, 于海业, 等. 基于语义分割的复杂场景下的秸秆检测[J]. 光学 精密工程, 2020,28(1):200-211.
Yuan-yuan LIU, Shuo ZHANG, Hai-ye YU, et al. Straw detection algorithm based on semantic segmentation in complex farm scenarios[J]. Optics and precision engineering, 2020, 28(1): 200-211.
刘媛媛, 张硕, 于海业, 等. 基于语义分割的复杂场景下的秸秆检测[J]. 光学 精密工程, 2020,28(1):200-211. DOI: 10.3788/OPE.20202801.0200.
Yuan-yuan LIU, Shuo ZHANG, Hai-ye YU, et al. Straw detection algorithm based on semantic segmentation in complex farm scenarios[J]. Optics and precision engineering, 2020, 28(1): 200-211. DOI: 10.3788/OPE.20202801.0200.
基于阈值或纹理分割的秸秆覆盖率检测算法,存在准确性低、复杂度高、运行耗时长等问题,且对含有大量干扰因素的复杂农田场景分割效果不佳。本文提出了一种检测准确度高、训练参数少且运行速度快的语义分割算法(DSRA-UNet)。该算法结合UNet的对称编-解码架构,在浅层特征图使用标准卷积,深层采用深度可分离卷积,并在每一层增加残差结构来加大网络深度,以降低参数量的同时提高精度。此外,在跳级连接过程增加全局最大池化注意力机制,进一步提高网络的分割精度。将算法在秸秆数据集上进行验证,实验结果表明本文所提算法平均交并比达到94.3%,训练参数量仅为0.76 M,单张图片测试时间在0.05 s以下。该算法可以精准分割出秸秆和土壤,并可在复杂环境下将干扰信息分割出,可在一定程度上解决图像中的阴影问题。
The traditional segmentation algorithms for straw coverage detection basing on thresholds or texture features were difficult to get rid of the disadvantages of low accuracy
high complexity and time-consuming
and the effect of segmentation on complex farmland scenes containing a lot of interference factors was not good. Therefore
this paper proposed a semantic segmentation algorithm (DSRA-UNet) with high accuracy
a small mount of training parameters and high running speed. Combined with UNet's symmetric codec architecture
this algorithm used standard convolution in shallow feature maps
and depthwise separable convolution in deep ones. Residual structure was built in each layer to increase the network depth
which can reduce the number of parameters and improve the accuracy at the same time. In addition
the global maximum pooling attention mechanism was added during the skip connection process to further improve the segmentation accuracy of the network. The algorithm was verified on the straw datasets
and the experiment results showed that the mean of intersection over union reached to 94.3% in the proposed algorithm of this paper. The number of training parameters of the algorithm was only 0.76 M
and the test time of single picture was less than 0.05 s. The algorithm could accurately segment the straw and soil
and separate the interference information in the complex environment
especially solving the shadow problem in image.
贺美.秸秆还田对黑土有机质变化的影响效应[D].北京: 中国农业科学院, 2016. http://cdmd.cnki.com.cn/Article/CDMD-82101-1016174502.htm
HE M. Effects of Straw Returning Methods On Black Soil Organic Matter [D].Beijing: Chinese Academy of Agricultural Sciences, 2016.(in Chinese)
宫纯文, 李建玉, 李学彬, 等.秸秆燃烧和沙尘对气溶胶光学特性的影响[J].光学 精密工程, 2015, 23(10):2768-2777.
GONG CH W, LI J Y, LI X B, et al .. Influence of straw burning and dust on aerosol optical properties[J]. Opt. Precision Eng ., 2015, 23(10): 2768-2777.(in Chinese)
王丽丽, 徐岚俊, 魏舒, 等.基于Sauvola与Otsu算法的秸秆覆盖率图像检测方法[J].农业工程, 2017, 7(4):29-35.
WANG L L, XU L J, WEI SH, et al .. Straw coverage detection method based on Sauvola and Otsu segmentation algorithm[J]. Agricultural Engineering , 2017, 7(4):29-35. (in Chinese)
李洪文, 李慧, 何进, 等.基于人工神经网络的田间秸秆覆盖率检测系统[J].农业机械学报, 2009, 40(6):58-62.
LI H W, LI H, HE J, et al .. Field coverage detection system of straw based on artificial neural network[J]. Transactions of the Chinese Society for Agricultural Machinery , 2009, 40(6):58-62. (in Chinese)
刘媛媛, 王跃勇, 于海业, 等.基于多阈值图像分割算法的秸秆覆盖率检测[J].农业机械学报, 2018, 49(12):27-35, 55.
LIU Y Y, WANG Y Y, YU H Y, et al .. Detection of straw coverage rate based on multi-threshold image segmentation algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery , 2018, 49(12):27-35, 55. (in Chinese)
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM , 2017, 60(6):84-90.
潘仙张, 张石清, 郭文平.多模深度卷积神经网络应用于视频表情识别[J].光学 精密工程, 2019, 27(4): 963-970.
PAN X ZH, ZHANG SH Q, GUO W P. Video-based facial expression recognition using multimodal deep convolutional neural networks[J]. Opt. Precision Eng ., 2019, 27(4): 963-970. (in Chinese)
郭保青, 王宁.基于改进深度卷积网络的铁路入侵行人分类算法[J].光学 精密工程, 2018, 26(12): 3040-3050.
GUO B Q, WANG N. Pedestrian intruding railway clearance classification algorithm based on improved deep convolutional network[J]. Opt. Precision Eng. , 2018, 26(12): 3040-3050. (in Chinese)
吕晓琪, 吴凉, 谷宇, 等.基于三维卷积神经网络的低剂量CT肺结节检测[J].光学 精密工程, 2018, 26(5): 1211-1218.
LÜ X Q, WU L, GU Y, et al .. Detection of low dose CT pulmonary nodules based on 3D convolution neural network[J]. Opt. Precision Eng. , 2018, 26(5): 1211-1218. (in Chinese)
潘蓉, 孙伟.基于预分割和回归的深度学习目标检测[J].光学 精密工程, 2017, 25(10s): 221-227.
PAN R, SUN W. Deep learning target detection based on pre-segmentation and regression[J]. Opt. Precision Eng ., 2017, 25(10s): 221-227. (in Chinese)
董月, 冯华君, 徐之海, 等.Attention Res-Unet:一种高效阴影检测算法[J].浙江大学学报(工学版), 2019, 53(2):373-381+406.
DONG Y, FENG H J, XU ZH H, et al .. Attention Res-Unet: an efficient shadow detection algorithm[J]. Journal of ZheJiang University ( Engineering Science ), 2019, 53(2): 373-381+406. (in Chinese)
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. International Conference on Medical Image Computing and Computer-assisted Intervention. Cham: Springer , 2015: 234-241.
JONATHAN L, EVAN S, TREVOR D. Fully Convolutional Networks for Semantic Segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2015: 3431- 3440.
HE K M, ZHANG X Y, REN S Q, et al .. Deep Residual Learning for Image Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ), 2016: 770- 778.
FRANCOIS C.Xception: Deep Learning with Depthwise Separable Convolutions[C]. Proceedings of the IEEE conference on computer vision and pattern recognition , 2017: 1251-1258.
VASWANI A, SHAZEER N, PARMAR N, et al .. Attention is All You Need[C]. Advances in neural information processing systems , 2017: 5998-6008.
ZHAO B, WU X, FENG J, et al .. Diversified visual attention networks for fine-grained object classification[J]. IEEE Transactions on Multimedia , 2017, 19(6): 1245-1256.
JO Y J, CHO H, LEE S Y, et al .. Quantitative phase imaging and artificial intelligence: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics , 2018, 25(1): 1-14.
LI H, XIONG P, AN J, et al .. Pyramid attention network for semantic segmentation[J]. arXiv preprint arXiv: 1805.10180, 2018. http://www.researchgate.net/publication/325396278_Pyramid_Attention_Network_for_Semantic_Segmentation?ev=auth_pub
LIN T Y, GOYAL P, GIRSHICK R, et al .. Focal Loss for Dense Object Detection[C]. Proceedings of the IEEE international conference on computer vision , 2017: 2980-2988.
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017, 39(12):2481-2495.
CHEN L C, ZHU Y, PAPANDREOU G, et al .. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]. Proceedings of the European conference on computer vision ( ECCV ), 2018: 801-818.
0
浏览量
347
下载量
15
CSCD
关联资源
相关文章
相关作者
相关机构