浏览全部资源
扫码关注微信
1.广州中国科学院先进技术研究所, 广东 广州 511458
2.成都理工大学信息科学与技术学院, 四川 成都 610059
[ "李伟剑 (1995—),男,安徽合肥人,硕士研究生,成都理工大学电子与通信工程专业,主要研究方向为图像处理,模式识别。Email:wisejay_Li@outlook.com" ]
邸思(1981-),男,北京人,副研究员,2007年于北京交通大学获得硕士学位,2011年于中国科学院微电子研究所获得博士学位,主要研究方向为微型光机电系统的开发。E-mail:si.di@giat.ac.cn DI Si, E-mail:si.di@giat.ac.cn
收稿日期:2019-08-02,
修回日期:2019-10-11,
录用日期:2019-10-11,
纸质出版日期:2020-02-25
移动端阅览
李伟剑, 金建, 邸思. 基于FAST特征提取的指静脉识别[J]. 光学精密工程, 2020,28(2):507-514.
Wei-jian LI, Jian JING, Si DI. Finger vein recognition algorithm based on FAST feature extraction[J]. Optics and precision engineering, 2020, 28(2): 507-514.
李伟剑, 金建, 邸思. 基于FAST特征提取的指静脉识别[J]. 光学精密工程, 2020,28(2):507-514. DOI: 10.3788/OPE.20202802.0507.
Wei-jian LI, Jian JING, Si DI. Finger vein recognition algorithm based on FAST feature extraction[J]. Optics and precision engineering, 2020, 28(2): 507-514. DOI: 10.3788/OPE.20202802.0507.
现有的指静脉识别方法通常以包含静脉分布的灰度图为对象进行算法设计。但由于采集装置的局限性
光照强度的不确定性
手指血管周围组织的复杂性等
原始图像即使经过图像预处理过程
得到的灰度图中依然会存在不规则的阴影和非静脉特征
这可能使得被提取出的静脉特征不具有很好的代表性和区分性,从而降低识别结果的准确性。因此
本文提出以包含指静脉分布的二值图为对象进行算法设计,从而在识别过程中尽可能减少非静脉因素的干扰。在特征提取上采用了适于二值图特征点检测的加速分割测试特征提取算法,提取出静脉纹理边缘中符合要求的像素点作为特征点,进而对检测到的特征点进行向量化描述。同时为了提高匹配的精度
提出了基于圆形邻域的匹配算法
使用加权匹配距离描述图像之间的相似程度。采用山东大学公开的手指静脉数据库进行算法性能测试,平均识别率为0.993,等误率为0.0196。上述结果证明了算法的有效性,为指静脉识别算法设计提供了新的思路。
Finger vein recognition algorithms are usually based on grayscale images of vein distributions. However
because of the limitations of image acquisition devices
the uncertainties in the illumination intensity and the complexity of the tissue around the finger vessels (among other factors)even after image processing cause the resulting grayscale images to possess irregular shadows and non-venous characteristics
which may reduce the accuracy of the recognition results. Therefore
this paper proposed a new finger vein identification algorithm based on binary images to minimize the interference of non-venous factors in the identification process. First
the features from accelerated segment test algorithm was used to extract the pixel points at the edges of vein textures as feature points
and then the feature vectors were constructed. Further
to improve the matching precision
a new matching algorithm based on circular neighborhoods was proposed. The weighted matching distance was used to describe the degree of similarity between images. The average recognition rate of the proposed method when applied to the finger vein database published by Shandong University is 0.993
and the equal error rate is 0.019 6.These results demonstrate the effectiveness of the algorithm and provide a new basis for the design of vein recognition algorithms.
Y CHENG , H CHEN , B CHENG , 等 . Special point representations for reducing data space requirements of finger-vein recognition applications . Multimedia Tools and Applications , 2017 . 76 ( 9 ): 11251 - 11271 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d73a314d5ebc06fd06c398e305869bbb http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d73a314d5ebc06fd06c398e305869bbb .
B A ROSDI , C W SHING , S A SUANDI , 等 . Finger vein recognition using local line binary pattern . Sensors , 2011 . 11 ( 12 ): 11357 - 11371 . http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_97daf77c606777c27d1eba386a77fbd2 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_97daf77c606777c27d1eba386a77fbd2 .
E C LEE , H JUNG , D KIM , 等 . New finger biometric method using near infrared imaging . Sensors , 2011 . 11 ( 3 ): 2319 - 2333 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000147342 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000147342 .
W SONG , T KIM , H C KIM , 等 . A finger-vein verification system using mean curvature . Pattern Recognition Letters , 2011 . 32 ( 11 ): 1541 - 1547 . http://cn.bing.com/academic/profile?id=1359ebdf8f23fada355c384f44612aba&encoded=0&v=paper_preview&mkt=zh-cn http://cn.bing.com/academic/profile?id=1359ebdf8f23fada355c384f44612aba&encoded=0&v=paper_preview&mkt=zh-cn .
崔 建江 , 李 琦 , 薛 定宇 . 基于皮肤散射模型的手指静脉图像去模糊化 . 光学 精密工程 , 2016 . 24 ( 10s ): 727 - 732 . http://www.eope.net/CN/abstract/abstract16698.shtml http://www.eope.net/CN/abstract/abstract16698.shtml .
J J CUI , Q LI , D Y XUE . Finger vein image deblurring method based on skin scattering models . Opt. Precision Eng , 2016 . 24 ( 10s ): 727 - 732 . http://www.eope.net/CN/abstract/abstract16698.shtml http://www.eope.net/CN/abstract/abstract16698.shtml .
Y MATSUDA , N MIURA , A NAGASAKA , 等 . Finger-vein authentication based on deformation-tolerant feature-point matching . Machine Vision and Applications , 2016 . 27 ( 2 ): 237 - 250 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f20d664809622d3d37d4cace7a4c22c4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f20d664809622d3d37d4cace7a4c22c4 .
WILLIAM A, ONG T S, LAU S H, et al .. Finger vein verification using local histogram of hybrid texture descriptors[C]. 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). IEEE , 2015: 304-308.
J CUI , J XIE , T LIU , 等 . Corners detection on finger vein images using the improved Harris algorithm . Optik , 2014 . 125 ( 17 ): 4668 - 4671 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a95021af3e68997bbad4b6f4ff4ee423 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a95021af3e68997bbad4b6f4ff4ee423 .
孟 宪静 , 袭 肖明 , 杨 璐 , 等 . 基于灰度不均匀矫正和SIFT的手指静脉识别方法 . 南京大学学报(自然科学) , 2018 . 54 ( 238 ): 7 - 16 . http://d.old.wanfangdata.com.cn/Periodical/njdxxb201801001 http://d.old.wanfangdata.com.cn/Periodical/njdxxb201801001 .
X J MENG , X M XI , L YANG , 等 . Finger vein recognition based on intensity inhomogeneity correction and scale invariant feature transform . Journal of Nanjing University(Natural Science) , 2018 . 54 ( 238 ): 7 - 16 . http://d.old.wanfangdata.com.cn/Periodical/njdxxb201801001 http://d.old.wanfangdata.com.cn/Periodical/njdxxb201801001 .
N KANOPOULOS , N VASANTHAVADA , R L BAKER , 等 . Design of an image edge detection filter using the Sobel operator . IEEE Journal of Solid-state Circuits , 1988 . 23 ( 2 ): 358 - 367 . http://cn.bing.com/academic/profile?id=e69fc03a003266647dcafed9f23aae83&encoded=0&v=paper_preview&mkt=zh-cn http://cn.bing.com/academic/profile?id=e69fc03a003266647dcafed9f23aae83&encoded=0&v=paper_preview&mkt=zh-cn .
徐 光柱 , 张 柳 , 邹 耀斌 . 自适应脉冲耦合神经网络与匹配滤波器相结合的视网膜血管分割 . 光学 精密工程 , 2017 . 25 ( 3 ): 756 - 764 . http://www.eope.net/CN/abstract/abstract16960.shtml http://www.eope.net/CN/abstract/abstract16960.shtml .
G ZH XU , L ZHANG , Y B ZOU . Retinal blood segmentation with adaptive PCNN and matched filter . Opt. Precision Eng , 2017 . 25 ( 3 ): 756 - 764 . http://www.eope.net/CN/abstract/abstract16960.shtml http://www.eope.net/CN/abstract/abstract16960.shtml .
贾 桂敏 , 李 振娟 , 杨 金锋 , 等 . 手指静脉红外图像血管网络修复新方法 . 红外与激光工程 , 2019 . 48 ( 4 ): 426003 - 0426003 . http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201904045 http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201904045 .
G M JIA , ZH J LI , J F YANG , 等 . Novel vascular network restoration method for finger-vein IR images . Infrared and Laser Engineering , 2019 . 48 ( 4 ): 426003 - 0426003 . http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201904045 http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201904045 .
申 森 , 李 艾华 , 姚 良 . 基于小波包和Niblack法的枪号图像二值化算法 . 光子学报 , 2013 . 42 ( 3 ): 354 - 358 . http://d.old.wanfangdata.com.cn/Periodical/gzxb201303021 http://d.old.wanfangdata.com.cn/Periodical/gzxb201303021 .
S SHEN , A H LI , L YAO . Gun code binary image algorithm based on wavelet packet and Niblack method . Acta Photonica Sinica , 2013 . 42 ( 3 ): 354 - 358 . http://d.old.wanfangdata.com.cn/Periodical/gzxb201303021 http://d.old.wanfangdata.com.cn/Periodical/gzxb201303021 .
ROSTEN E, DRUMMOND T. Fusing points and lines for high performance tracking[C]. Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on. IEEE , 2005: 1508-1505.
ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[C]. European Conference On Computer Vision , 2006: 430-443.
YIN Y L, LIU L L, SUN X W. SDUMLA-HMT: a multimodal biometric database[C]. The 6th Chinese Conference on Biometric Recognition (CCBR 2011), 2011: 260-268.
DECANN B, ROSS A. Relating ROC and CMC curves via the biometric menagerie[C]. Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference on. IEEE , 2013: 1-8.
C HSIA . New verification strategy for finger-vein recognition system . IEEE Sensors Journal , 2018 . 18 ( 2 ): 790 - 797 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e57484d3fa716168be1b7d9dec9a5e56 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e57484d3fa716168be1b7d9dec9a5e56 .
PANG S, YIN Y, YANG G, et al .. Rotation invariant finger vein recognition[C]. Chinese conference on biometric recognition, 2012: 151-156.
0
浏览量
15
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构