浏览全部资源
扫码关注微信
南京邮电大学 电子与光学工程学院、微电子学院,江苏 南京 210023
[ "辛济昊 (1996-),男,江苏盐城人,硕士研究生,2017年于南京邮电大学获得学士学位,研究方向为声学MEMS器件。E-mail:1300238041@qq.com" ]
王德波 (1983-)男,山东泰安人,副教授,硕士生导师,2012年于东南大学MEMS教育部重点实验室获得硕士和博士学位,目前在南京大学近代声学教育部重点实验室进行博士后工作,研究方向为MEMS微波功率传感器和声学MEMS器件。E-mail:wdb@njupt.edu.cn WANG De-bo, E-mail:wdb@njupt.edu.cn
收稿日期:2019-08-07,
修回日期:2019-10-10,
录用日期:2019-10-10,
纸质出版日期:2020-04-15
移动端阅览
辛济昊, 何星月, 王德波. 不同结构石墨烯发声器的热声效率[J]. 光学 精密工程, 2020,28(4):898-903.
Ji-hao XIN, Xing-yue HE, De-bo WANG. Thermoacoustic efficiency of graphene sound-generators using different structures[J]. Optics and precision engineering, 2020, 28(4): 898-903.
辛济昊, 何星月, 王德波. 不同结构石墨烯发声器的热声效率[J]. 光学 精密工程, 2020,28(4):898-903. DOI: 10.3788/OPE.20202804.0898.
Ji-hao XIN, Xing-yue HE, De-bo WANG. Thermoacoustic efficiency of graphene sound-generators using different structures[J]. Optics and precision engineering, 2020, 28(4): 898-903. DOI: 10.3788/OPE.20202804.0898.
为了研究不同石墨烯发声器结构对热声效率的影响,建立了石墨烯发声器的声压解析模型,对单层石墨烯发声器、多层石墨烯发声器以及镍铬基的泡沫石墨烯发声器的发声效率进行了理论与实验研究。首先,介绍了石墨烯发声器的工作原理,建立了石墨烯发声器的周期性温度变化模型和声压解析模型。然后,实验研究了单层石墨烯发声器、多层石墨烯发声器以及镍铬基的泡沫石墨烯发声器的热声效率。实验结果表明:在14~25 kHz内,施加6 V交流电,测距为6 cm的条件下,单层、多层和泡沫石墨烯发声器的最高SPL分别为35.19,20.36和33.42 dB,SPL理论值最高约为37.45 dB。具有较低电阻,较低比热容,较高导热率的石墨烯发声器可以获得较高的热声效率和声压。
To study the influence of different graphene sound-generator structures on thermoacoustic efficiency
a sound pressure analytical model was established. Theoretical and experimental studies were conducted on the thermoacoustic efficiency of a monolayer graphene sound-generator
multilayer graphene sound-generator
and nickel/chromium-based graphene foam sound-generator. Firstly
the principle of a graphene sound-generator was introduced. A periodic temperature change model and a sound pressure analytical model of this generator were then established. Finally
the three aforementioned sound-generators were studied using an experimental method. The experimental results show that the maximum SPL values of the monolayer
multilayer
and the graphene foam sound-generator are 35.19
20.36 and 33.42 dB
respectively
in the frequency range of 14~25 kHz when 6 V AC is applied for a distance of 6 cm. The maximum theoretical SPL is approximately 37.45 dB. Graphene sound-generators with lower resistance
lower specific heat capacity
and higher thermal conductivity can achieve higher thermoacoustic efficiency and sound pressure.
S K LEE , B J KIM , H JANG , 等 . Stretchable graphene transistors with printed dielectrics and gate electrodes . Nano Letters , 2011 . 11 ( 11 ): 4642 - 4646 . DOI: 10.1021/nl202134z http://doi.org/10.1021/nl202134z .
Z F LIU , Q LIU , Y HUANG , 等 . Organic photovoltaic devices based on a novel acceptor material: graphene . Advanced Materials , 2008 . 20 ( 20 ): 3924 - 3930 . DOI: 10.1002/adma.200800366 http://doi.org/10.1002/adma.200800366 .
周 锋 , 金 晓峰 . 全光纤结构的石墨烯电吸收调制器 . 光学 精密工程 , 2016 . 24 ( 9 ): 2117 - 2125 . http://www.eope.net/CN/abstract/abstract16530.shtml http://www.eope.net/CN/abstract/abstract16530.shtml .
F ZHOU , X F JIN . All-fiber graphene electro-absorption modulator . Opt. Precision Eng , 2016 . 24 ( 9 ): 2117 - 2125 . http://www.eope.net/CN/abstract/abstract16530.shtml http://www.eope.net/CN/abstract/abstract16530.shtml .
T HAN , Y LEE , M R CHOI , 等 . Extremely efficient flexible organic light-emitting diodes with modified graphene anode . Nature Photonics , 2012 . 6 ( 2 ): 105 - 110 . DOI: 10.1038/nphoton.2011.318 http://doi.org/10.1038/nphoton.2011.318 .
R KIM , M BAE , D G KIM , 等 . Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates . Nano Letters , 2011 . 11 ( 9 ): 3881 - 3886 . DOI: 10.1021/nl202000u http://doi.org/10.1021/nl202000u .
J A ROGERS . Electronic materials: making graphene for macroelectronics . Nature Nanotechnology , 2008 . 3 ( 5 ): 254 - 255 . DOI: 10.1038/nnano.2008.115 http://doi.org/10.1038/nnano.2008.115 .
F BONACCORSO , Z SUN , T HASAN , 等 . Graphene photonics and optoelectronics . Nature Photonics , 2010 . 4 ( 9 ): 611 - 622 . DOI: 10.1038/nphoton.2010.186 http://doi.org/10.1038/nphoton.2010.186 .
S BAE , Y LEE , B K SHARMA , 等 . Graphene-based transparent strain sensor . Carbon , 2013 . 51 ( 1 ): 236 - 242 . http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228273989/ http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228273989/ .
刘 显明 , 曹 雪颖 , 李 相迪 , 等 . 蓝光辐照对PET和SiO 2 基石墨烯导电性能的影响 . 光学 精密工程 , 2016 . 24 ( 10s ): 162 - 168 . http://www.eope.net/CN/abstract/abstract16726.shtml http://www.eope.net/CN/abstract/abstract16726.shtml .
X M LIU , X Y CAO , X D LI , 等 . Electrical conductivity of graphene film electrodes on PET and SiO 2 substrate under blue light irradiation . Opt. Precision Eng , 2016 . 24 ( 10s ): 162 - 168 . http://www.eope.net/CN/abstract/abstract16726.shtml http://www.eope.net/CN/abstract/abstract16726.shtml .
冯 德军 , 黄 文育 , 纪 鹏宇 , 等 . 基于石墨烯可饱和吸收体的掺铒光纤环形腔脉冲激光器 . 光学 精密工程 , 2013 . 21 ( 5 ): 1097 - 1101 . http://www.eope.net/CN/abstract/abstract14672.shtml http://www.eope.net/CN/abstract/abstract14672.shtml .
D J FENG , W Y HUANG , P Y JI , 等 . Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber . Opt. Precision Eng , 2013 . 21 ( 5 ): 1097 - 1101 . http://www.eope.net/CN/abstract/abstract14672.shtml http://www.eope.net/CN/abstract/abstract14672.shtml .
郑 安然 , 张 威 , 郭 振 , 等 . 活化部分凝血活酶时间检测石墨烯传感器的研制 . 光学 精密工程 , 2019 . 27 ( 6 ): 1387 - 1396 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201906019 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201906019 .
A R ZHENG , W ZHANG , ZH GUO , 等 . Graphene sensor for activatied partial thromboplatin time detection . Opt. Precision Eng , 2019 . 27 ( 6 ): 1387 - 1396 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201906019 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201906019 .
H D ARNOLD , I B CRANDALL . The thermophone as a precision source of sound . Physical Review , 1917 . 10 ( 1 ): 22 - 38 . DOI: 10.1103/PhysRev.10.22 http://doi.org/10.1103/PhysRev.10.22 .
J W SUK , K D KIRK , Y F HAO , 等 . Thermoacoustic sound generation from monolayer graphene for transparent and flexible sound sources . Advanced Materials , 2012 . 24 ( 47 ): 6342 - 6347 . DOI: 10.1002/adma.201201782 http://doi.org/10.1002/adma.201201782 .
W W FEI , J X ZHOU , W L GUO . Low‐voltage driven graphene foam thermoacoustic speaker . Small , 2015 . 11 ( 19 ): 2252 - 2256 . DOI: 10.1002/smll.201402982 http://doi.org/10.1002/smll.201402982 .
L Q TAO , Y LIU , H TIAN , 等 . A novel thermal acoustic device based on porous graphene . AIP Advances , 2016 . 6 ( 1 ): 015105 DOI: 10.1063/1.4939935 http://doi.org/10.1063/1.4939935 .
L Q TAO , H SUN , Y LIU , 等 . Flexible graphene sound device based on laser reduced graphene . Applied Physics Letters , 2017 . 111 ( 10 ): 103104 DOI: 10.1063/1.5002113 http://doi.org/10.1063/1.5002113 .
K LEE , S H JANG , I JUNG . Analysis of acoustical performance of Bi-layer graphene and graphene-foam-based thermoacoustic sound generating devices . Carbon , 2018 . 127 13 - 20 . DOI: 10.1016/j.carbon.2017.10.078 http://doi.org/10.1016/j.carbon.2017.10.078 .
K LEE , S H JANG , I JUNG . Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film . Nanotechnology , 2018 . 29 ( 32 ): 325502 DOI: 10.1088/1361-6528/aac6ae http://doi.org/10.1088/1361-6528/aac6ae .
H TIAN , T L REN , D XIE , 等 . Graphene-on-paper sound source devices . ACS Nano , 2011 . 5 ( 6 ): 4878 - 4885 . DOI: 10.1021/nn2009535 http://doi.org/10.1021/nn2009535 .
H TIAN , D XIE , Y YANG , 等 . Single-layer graphene sound-emitting devices: experiments and modeling . Nanoscale , 2012 . 4 ( 7 ): 2272 - 2277 . DOI: 10.1039/c2nr11572g http://doi.org/10.1039/c2nr11572g .
H TIAN , C LI , M A MOHAMMAD , 等 . Graphene earphones: entertainment for both humans and animals . ACS Nano , 2014 . 8 ( 6 ): 5883 - 5890 . DOI: 10.1021/nn5009353 http://doi.org/10.1021/nn5009353 .
0
浏览量
254
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构