浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所 航空成像与测量重点实验室, 吉林 长春 130033
[ " 刘伟毅(1983-), 男, 山东莱州人, 博士, 副研究员, 硕士生导师, 2012年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事热设计及热光学分析方面的研究。E-mail:2219101@163.com" ]
[ " 徐钰蕾(1984-), 女, 吉林省吉林市人, 博士, 副研究员, 2007年于中国科学技术大学获得学士学位, 2012年于中国科学技术大学获得博士学位, 主要从事航空光电载荷的光机结构设计及其仿真分析研究。E-mail:yuleixu@ciomp.ac.cn" ]
收稿日期:2019-12-02,
录用日期:2019-12-20,
纸质出版日期:2020-06-25
移动端阅览
刘伟毅, 徐钰蕾, 石磊, 等. 航空低温温度对自准直检焦系统的影响[J]. 光学精密工程, 2020,28(6):1226-1235.
Wei-yi LIU, Yu-lei XU, Lei SHI, et al. Influence of aviation low temperature on auto-collimating focusing system[J]. Optics and precision engineering, 2020, 28(6): 1226-1235.
刘伟毅, 徐钰蕾, 石磊, 等. 航空低温温度对自准直检焦系统的影响[J]. 光学精密工程, 2020,28(6):1226-1235. DOI: 10.3788/OPE.20202806.1226.
Wei-yi LIU, Yu-lei XU, Lei SHI, et al. Influence of aviation low temperature on auto-collimating focusing system[J]. Optics and precision engineering, 2020, 28(6): 1226-1235. DOI: 10.3788/OPE.20202806.1226.
为了研究航空低温温度对自准直检焦系统的影响,从而指导实际检焦系统的设计及修正,本文根据自准直检焦及几何光学原理,分析了单点成像、条纹成像及有无像散条件下,成像位置、成像宽度与接收的光强度差之间的相互关系,并给出了相关理论公式。结合实际的相机工况,对光学系统进行了相应的仿真,仿真结果显示,仿真双波峰电压值为1.4 V和0.47 V,与实际的检焦双波峰电压值1.38 V和0.56 V基本一致。根据结果进行了温控和柔性支撑,从而使检焦正常,提高了自准直检焦系统的温度适应性。本研究对系统的温度适应性具有指导作用。
To analyze the influence of aeronautical low temperature on the self-collimation focus detection system
and enables the design and correction of the actual focus detection system
the relationship among various factors under different imaging conditions was investigated. Based on the principle of autocollimation focus detection and geometry
comparison of single-point and fringe imaging
imaging position and width according to different received light intensities
and presence and absence of astigmatic conditions were analyzed. Thus
a related analysis formula was deduced.Combined with the actual camera working conditions
the corresponding simulation of the optical system was performed
and the simulation results (simulated bimodal voltage values of 1.4 V and 0.47 V) were in accordance with the actual test data (peak-to-focus double-peak voltage values of 1.38 V and 0.56 V). The actual modification measures are carried out to improve the temperature adaptability of the self-collimation detection system.The temperature adaptability analysis is in accordance with the actual demand and has a guiding function for the temperature adaptability of the system.
李海星, 惠守文, 丁亚林.国外航空光学测绘装备发展及关键技术[J].电子测量与仪器学报, 2014, 28(5):469-477.
LI H X, HUI SH W, DING Y L. Development and key techniques of optical mapping equipment in foreign airborne[J]. Journal of Electronic Measurement and Instrumentation , 2014, 28(5):469-477. (in Chinese)
李永昆, 林招荣, 张绪国.国外远距斜视航空相机发展概况[J].航天返回与遥感, 2017, 38(6):11-18.
LI Y K, LIN ZH R, ZHANG X G. Development survey of foreign aerial cameras for distant oblique reconnaissance[J]. Spacecraft Recovery & Remote Sensing , 2017, 38(6):11-18. (in Chinese)
赵建川, 张润琦, 王杰, 等.航空相机成像技术研究[J/OL].红外技术: 1-14.
ZHAO J CH, ZHANG R J, WANG J, SHAO Y, SHEN Y, LIU C M. Research on aerial camera imaging technology[J/OL]. Infrared Technology : 1-14.[2019-11-22]. http://kns.cnki.net/kcms/detail/53.1053.TN.20181220.1049.002.html http://kns.cnki.net/kcms/detail/53.1053.TN.20181220.1049.002.html . (in Chinese)
廖劲峰.一种机载长焦距可见光系统的无热化设计[D].北京: 中国科学院大学, 2019.
LIAO J F. Athermalization Design of an Airborne Telephoto Visible System [D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
牛海军.长焦距相机调焦关键技术研究[D].北京: 中国科学院大学, 2016.
NIU H J. Study on Key Techniques of Autofocusing for Long-Focus Camera [D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese)
SONG J H, HWANG S U, PARK I Y, et al .. Automatic focusing system for optical tweezers[C]. Proc SPIE 6048, Optomechatronic Actuators and Manipulation , 2005, 6048: 60480B.
黄厚田, 王德江, 沈宏海, 等.航空成像系统检调焦技术分析与展望[J].中国光学, 2014, 7(4):542-551.
HUANG H T, WANG D J, SHEN H H, et al .. Analysis and prospect of auto-focusing technique for the aerial camera[J]. Chinese Optics , 2014, 7(4):542-551. (in Chinese)
李启辉, 丁亚林, 修吉宏, 等.一种基于图像处理的自准直检焦方法[J/OL].激光与光电子学进展: 1-12[2019-11-22] . http://kns.cnki.net/kcms/detail/31.1690.TN.20190709.0837.044.html http://kns.cnki.net/kcms/detail/31.1690.TN.20190709.0837.044.html .
LI Q H, DING Y L, XIU J H, et al .. A self-collimation focusing method based on image processing[J/OL]. Laser & Optoelectronics Progress: 1-12[2019-11-22]. http://kns.cnki.net/kcms/detail/31.1690.TN.20190709.0837.044.html http://kns.cnki.net/kcms/detail/31.1690.TN.20190709.0837.044.html . (in Chinese)
殷延鹤.光电经纬仪快速被动调焦技术研究[D].北京: 中国科学院大学, 2018.
YIN Y H. Fast Passive Auto-Focus for Opto-Electrical Theodolites [D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)
陈志超.基于R-C系统的长焦距航空相机实时相位检焦技术研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.
CHEN ZH CH. Research on Real-Time Phase Detection Auto Focus Technique of Long Focus Airborne Camera Based on R-C Optical System [D]. Changchun: Graduate University of the Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2016. (in Chinese)
孟繁浩.基于图像处理的自动检焦技术在航空相机中的应用研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.
MENG F H. Study on the Application of Autofocus Technique Based on Imageprocessing Technology in Aerial Camera [D]. Changchun: Graduate University of the Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2016. (in Chinese)
王晓茜.航天遥感CCD相机检焦控制系统设计[J].现代经济信息, 2015(23):349.
WANG X X. Design of focal control system for space remote sensing CCD camera[J]. Modern economic information, 2015(23):349. (in Chinese)
陈昌龙, 邸成良, 唐小萍, 等.基于线阵CCD的高速光刻检焦技术[J].红外与激光工程, 2015, 44(8):2389-2394.
CHEN CH L, DI CH L, TANG X P, et al .. High-speed focusing technique for lithography based on line scan CCD[J]. Infrared and Laser Engineering , 2015, 44(8):2389-2394. (in Chinese)
程鹏辉, 吴萌源.空间相机调焦平台的动力学特性研究[J].光学 精密工程, 2019, 27(3):602-609.
CHENG P H, WU M Y. Research on dynamic characteristics of space camera focusing platform[J]. Opt. Precision Eng. , 2019, 27(3):602-609. (in Chinese)
魏桂华, 肖亮, 郑志忠.推扫式高光谱相机自动调焦[J].光学 精密工程, 2019, 27(2):450-457.
WEI G H, XIAO L, ZHENG ZH ZH. Auto-focusing method of push-boom hyperspectral camera[J]. Opt. Precision Eng., 2019, 27(2):450-457. (in Chinese)
孔林, 杨林.空间相机温度-离焦特性分析与试验[J].光学 精密工程, 2017, 25(7):1825-1831.
KONG L, YANG L. Study and test of thermal-defocusing property in space camera[J]. Opt. Precision Eng. , 2017, 25(7):1825-1831. (in Chinese)
张学敏, 宋兴, 候晓华, 等.可调焦离轴三反光学系统的装调[J].光学 精密工程, 2017, 25(6):1458-1463.
ZHANG X M, SONG X, HOU X H, et al .. Alignment of focus-adjustable off-axis reflective optical system[J]. Opt. Precision Eng. , 2017, 25(6):1458-1463. (in Chinese)
姜紫庆, 贾建军.空间相机透镜调焦机构的设计与测试[J].光学 精密工程, 2018, 26(12):2956-2962.
JIANG Z Q, JIA J J. Development of focusing mechanism for space camera[J]. Opt. Precision Eng. , 2018, 26(12):2956-2962. (in Chinese)
吕世良, 刘金国, 王晓茜.对地观测高分辨率TDICCD相机调焦控制系统设计[J].中国光学, 2015, 8(6):1013-1019.
LÜ SH L, LIU J G, WANG X X. Design of refocusing system for a high resolution TDICCD earth observation camera[J]. Chinese Optics , 2015, 8(6):1013-1019. (in Chinese)
刘磊, 马军, 郑玉权.空间微重力下离轴三反相机离焦范围[J].中国光学, 2014, 7(2):320-325.
LIU L, MA J, ZHENG Y Q. Defocus range of off-axis three-mirror anastigmat (TMA) camera under space microgravity[J]. Chinese Optics , 2014, 7(2):320-325. (in Chinese)
刘炳强, 张帆, 李景林, 等.空间相机调焦机构运动同步性误差分析[J].中国光学, 2013, 6(6):946-951.
LIU B Q, ZHANG F, LI J L, et al .. Analysis of synchronous motion error for focusing mechanism of space camera[J]. Chinese Optics , 2013, 6(6):946-951. (in Chinese)
许兆林, 赵育良, 张玉叶.基于光学自准直的航空相机自动调焦系统[J].光学仪器, 2011, 33(2):52-56.
XU ZH L, ZHAO Y L, ZHANG Y Y. Autofocusing system based on optical autocollimating for aerial camera[J]. Optical Instruments , 2011, 33(2):52-56. (in Chinese)
史磊, 金光, 田海英, 等.航空相机的自准直自动检焦方法研究[J].光学 精密工程, 2008, 16(12):2460-2464.
SHI L, JIN G, TIAN H Y, et al .. Autofocusing method with automatic calibration for aerial camera[J]. Opt. Precision Eng. , 2008, 16(12):2460-2464. (in Chinese)
0
浏览量
208
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构