浏览全部资源
扫码关注微信
西安电子科技大学 物理与光电工程学院,陕西 西安 710071
[ "张弛(1992-),女,四川射洪人,博士研究生,主要从事目标与环境光学散射特性的研究。Email:467473107@qq.com" ]
吴鑫(1986-),男,博士,硕士生导师,主要从事光电场景仿真以及微纳光学成像的研究。Email: xwu@xidian.edu.cn E-mail: xwu@xidian.edu.cn
收稿日期:2019-12-31,
录用日期:2020-2-25,
纸质出版日期:2020-06-15
移动端阅览
张弛, 吴鑫, 谢建. 基于双向反射分布函数的海面红外偏振特性表征模型[J]. 光学精密工程, 2020,28(6):1303-1313.
Chi ZHANG, Xin WU, Jian XIE. Infrared polarization characteristics on sea surface based on bidirectional reflection distribution function[J]. Optics and precision engineering, 2020, 28(6): 1303-1313.
张弛, 吴鑫, 谢建. 基于双向反射分布函数的海面红外偏振特性表征模型[J]. 光学精密工程, 2020,28(6):1303-1313. DOI: 10.3788/OPE.20202806.1303.
Chi ZHANG, Xin WU, Jian XIE. Infrared polarization characteristics on sea surface based on bidirectional reflection distribution function[J]. Optics and precision engineering, 2020, 28(6): 1303-1313. DOI: 10.3788/OPE.20202806.1303.
针对红外波段下海面偏振特性建模的问题,在双向反射分布函数的基础上,建立了海面微面元的偏振双向反射分布函数模型。综合考虑了海面的自发辐射效应和反射效应对探测器接收辐射的影响,提出了一种新的海面红外偏振特性表征模型。利用Elfouhaily海浪谱和快速傅里叶变换计算了海面的高度场信息和斜率信息。数值计算了不同观测天顶角和不同风速下海面自发辐射的线性偏振度,以及不同入射天顶角下海面反射辐射的线性偏振度,仿真生成了海面和舰船的红外偏振图像。仿真数据与文献数据的对比分析表明,本文所建立的红外偏振特性模型适用于分析海面的红外偏振特性。与传统的红外强度图像相比,红外偏振图像可以提供更多关于海面的细节信息。同时,目标与海面的偏振特征差异更明显,对比度更高。所提出的海面红外偏振特性表征模型对海上目标的探测识别应用具有重要的意义。
Aiming to determine the polarization characteristics of the sea surface in the infrared wave band
a model of the polarization bidirectional reflection distribution function (pBRDF) for sea surface micro-elements was developed based on the micro-facet BRDF. Considering the effects of emission and reflection from a sea surface on the radiation received by the detector during radiation transmission
a novel model of sea surface infrared polarization characteristics was proposed. The elevation and slope of the sea surface could be captured using the Elfouhaily wave spectra and fast Fourier transforms (FFTs). Then
the degrees of linear polarization of sea surface emission and reflection radiation for different observation and incident zenith angles and for different wind speeds were calculated.Infrared polarization images of the sea surface and a ship were simulated. Through a comparative analysis of simulated data and the data obtained from the literature
the results show that the model established in this paper is suitable for investigating the infrared polarization characteristics of the sea surface. Compared with infrared images based on light intensity information
the infrared polarization images provide more details about the sea surface. Meanwhile
the differences in polarization characteristics between the target and sea surface are clearer
and the contrast between the sea surface and target is higher. The model proposed in this paper is of significance in the detection of maritime targets in the infrared wave band.
BJÖRKERT S, RENHORN I G E. Efficient polarimetric BRDF transformations[C]. Proc SPIE 9820, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXVⅡ , Baltimore, Maryland, USA, 2016, 9820: 98200D.
ZONIOS G, BASSUKAS I D, DIMOU A. Comparative evaluation of two simple diffuse reflectance models for biological tissue applications[J]. Applied Optics, 2008, 47(27): 4965-4973.
HE X D, TORRANCE K E, SILLION F X, et al. A comprehensive physical model for light reflection[C]. 1991 Proceeding, Special Interest Group on Graphics and Interactive .
COOPER A W, CRITTENDEN E C Jr, MILNE E A, et al.. Mid- and far-infrared measurements of Sun glint from the sea surface[C]. Proc SPIE 1749, Optics of the Air-Sea Interface: Theory and Measurement , San Diego, CA, USA, 1992, 1749: 176-185.
GREGORIS D J, YU S K W, COOPER A W, et al.. Dual-band infrared polarization measurements of Sun glint from the sea surface[C]. Proc SPIE 1687, Characterization, Propagation, and Simulation of Sources and Backgrounds Ⅱ , Orlando, FL, USA, 1992, 1687: 381-391.
SHAW J A, MARSTON C. Polarized infrared emissivity for a rough water surface[J]. Optics Express, 2000, 7(11): 375-380.
CHANG P, FLITTON J C, HOPCRAFT K I, et al.. Importance of shadowing and multiple reflections in emission polarization[J]. Waves in Random Media, 2002, 12(1): 1-19.
MEYERS J P. Modeling Polarimetric Imaging Using DIRSIG [D]. Michigan: Graduate University of the Michigan Technological, 2002.
LATGER J, CATHALA T, DOUCHIN N, et al.. Simulation of active and passive infrared images using the SE-WORKBENCH[C]. Proc SPIE 6543, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XVⅢ , Orlando, Florida, USA, 2007, 6543: 654302.
娄树理, 周晓东.各向异性粗糙海面的红外反射特性研究[J].光散射学报, 2011, 23(3): 277-282.
LOU SH L, ZHOU X D. Research on infrared reflectance of anisotropic rough sea surface[J]. The Journal of Light Scattering, 2011, 23(3): 277-282. (in Chinese)
杨敏, 方勇华, 吴军, 等.基于六参量偏振BRDF模型的地物背景偏振反射特性研究[J].光学学报, 2018, 38(5): 273-280.
YANG M, FANG Y H, WU J, et al.. Polarized reflectance properties for ground-feature's background based on six-component PBRDF model[J]. Acta Optica Sinica, 2018, 38(5): 273-280. (in Chinese)
刘宏, 朱京平, 王凯.基于随机表面微面元理论的二向反射分布函数几何衰减因子修正[J].物理学报, 2015, 64(18): 330-335.
LIU H, ZHU J P, WANG K. Modification of geometrical attenuation factor of bidirectional reflection distribution function based on random surface microfacet theory[J]. Acta Physica Sinica, 2015, 64(18): 330-335. (in Chinese)
章延隽, 王霞, 贺思.基于偏振双向反射分布函数的粗糙表面偏振特性[J].光学学报, 2018, 38(3): 441-447.
ZHANG Y J, WANG X, HE S. Polarization properties of rough surfaces based on polarized Bi-directional reflectance distribution function[J]. Acta Optica Sinica, 2018, 38(3): 441-447. (in Chinese)
张颖, 宋平, 赵慧洁.一种适用于涂层的双高斯偏振BRDF模型[J].红外与激光工程, 2017, 46(11): 200-206.
ZHANG Y, SONG P, ZHAO H J. Double-Gauss polarimetric BRDF model of painted surfaces[J]. Infrared and Laser Engineering, 2017, 46(11): 200-206. (in Chinese)
韩平丽, 刘飞, 魏雅喆, 等.用于海面目标探测的中波红外实时偏振成像系统研究[J].红外与毫米波学报, 2018, 37(6): 746-752, 760.
HAN P L, LIU F, WEI Y ZH, et al.. Real-time mid-infrared polarization imaging system design for marine targets detection[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 746-752, 760. (in Chinese)
HE M, HU Y X, HUANG J P, et al.. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals[J]. Optics Express, 2016, 24(26): A1618-A1634.
ELFOUHAILY T, CHAPRON B, KATSAROS K, et al.. A unified directional spectrum for long and short wind-driven waves[J]. Journal of Geophysical Research: Oceans, 1997, 102(C7): 15781-15796.
HE S, WANG X, XIA R Q, et al.. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering[J]. Applied Optics, 2018, 57(7): B150-B159.
李军伟, 陈伟力, 徐文斌.红外偏振成像技术与应用[M].北京:科学出版社, 2017.
LI J W, CHEN W L, XU W B. Infrared Polarization Imaging Technology and Application [M]. Beijing: Science Press, 2017. (in Chinese)
MOBLEY C D. Polarized reflectance and transmittance properties of windblown sea surfaces[J]. Applied Optics, 2015, 54(15): 4828-4849.
PRIEST R G, GERNER T A. Polarimetric BRDF in the microfacet model: theory and measurements[EB/OL]. Proceeding, the Millitary Sensing Symposia Specially Group Passive Sensors , 2000.
陈璐.海面红外辐射特性建模与仿真[D].西安: 西安电子科技大学, 2013.
CHEN L. Infrared Radiation Characteristics Modeling and Simulation of Sea Surface [D]. Xi'an: Xidian University, 2013. (in Chinese)
郭立新, 王蕊, 吴振森.随机粗糙面散射的基本理论与方法[M].北京:科学出版社, 2010.
GUO L X, WANG R, WU ZH S. Basic Theory and Method of Electromagnetic Scattering From Random Rough Surface [M]. Beijing: Science Press, 2010. (in Chinese)
DALIMONTE D, KAJIYAMA T. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface[J]. Optics Express, 2016, 24(8): 7922-7942.
HYDE M W, SCHMIDT J D, HAVRILLA M J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces[J]. Optics Express, 2009, 17(24): 22138-22153.
TSANG L, KONG J A, SHIN R T. Theory of microwave remote sensing [EB/OL]. Wiley Interscience, 1985.
张建奇.红外物理[M].西安:西安电子科技大学出版社, 2013.
ZHANG J Q. Infrared Physics [M]. Xi'an: Xidian University Press, 2013. (in Chinese)
RESNICK A, PERSONS C, LINDQUIST G. Polarized emissivity and Kirchhoff's law[J]. Applied Optics, 1999, 38(8): 1384-1387.
0
浏览量
161
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构