浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100049
3.中国科学院 航空光学成像与测量重点实验室,吉林 长春 130033
[ "王中石(1988-),男,黑龙江牡丹江人,博士研究生,2014年于哈尔滨工程大学获得硕士学位,主要从事航空光电平台自动控制方面的研究。E-mail:zhongshiwang@ciomp.ac.cn" ]
田大鹏(1984-),男,辽宁铁岭人,研究员,博士生导师,中国科学院青年创新促进会会员,2012年于北京航空航天大学获得博士学位,2009~2012年任日本庆应义塾大学先导研究中心共同研究员,主要从事运动控制理论与技术方面的研究。E-mail: d.tian@ciomp.ac.cn E-mail: d.tian@ciomp.ac.cn
收稿日期:2019-11-04,
录用日期:2019-11-27,
纸质出版日期:2020-06-15
移动端阅览
王中石, 田大鹏, 石磊. 考虑安装基座影响的光电平台等价捷联惯性稳定控制[J]. 光学精密工程, 2020,28(6):1344-1352.
Zhong-shi WANG, Da-peng TIAN, Lei SHI. Equivalent strapdown inertial stability control of photoelectric platform considering the effect of mounting base[J]. Optics and precision engineering, 2020, 28(6): 1344-1352.
王中石, 田大鹏, 石磊. 考虑安装基座影响的光电平台等价捷联惯性稳定控制[J]. 光学精密工程, 2020,28(6):1344-1352. DOI: 10.3788/OPE.20202806.1344.
Zhong-shi WANG, Da-peng TIAN, Lei SHI. Equivalent strapdown inertial stability control of photoelectric platform considering the effect of mounting base[J]. Optics and precision engineering, 2020, 28(6): 1344-1352. DOI: 10.3788/OPE.20202806.1344.
采用陀螺仪直接测量光电平台内部载荷的惯性角速度构建反馈,可以在运动载体上控制视轴惯性角速度,实现稳定成像。陀螺捷联惯性稳定控制能够构建前馈,有效提高系统带宽、减小控制误差,但对陀螺安装位置有要求。本文提出了在陀螺直接反馈的机械安装条件下等价捷联稳定的控制方法,并考虑平台基座约束条件建立了动力学模型。该模型显露了光电平台基座安装刚度引入的谐振问题。针对被控对象中的一对谐振和反谐振环节,基于稳定的零极点对消设计滤波器消除谐振。综合利用陀螺直接测量的框架惯性角速度和编码器测量的机械框架相对转角构建等价捷联惯性稳定回路。在等价捷联惯性稳定回路中,采用内回路干扰抑制结合基于逆模型前馈的复合控制方法,有效拓展控制带宽,提高对指令的跟踪精度和对载体姿态晃动的隔离性能。仿真和实验结果表明:该方法有效抑制了安装基座弹性约束力矩的谐振,且与陀螺直接反馈控制相比性能更优。对幅值为1 (°)/s、频率为1 Hz的典型正弦角速度指令进行跟踪,均方根误差由1.75 (°)/s减小到0.23 (°)/s,在1 Hz处扰动隔离度由18%减小到2%。
By using a gyroscope to directly measure the inertial angular velocity of the load inside a photoelectric platform to construct feedback
stable imaging can be achieved by controlling the inertial angular velocity of light of sight on the moving carrier. The gyroscope strapdown inertial stability control method can be used to construct the feedforward
increase the system bandwidth effectively
and minimize control error. However
there are requirements for the gyroscope installation position. We have proposed an equivalent strapdown stability control method
which satisfies the mechanical installation conditions with direct gyroscope feedback. The method establishes a dynamic model considering the constraints of the mounting base. The model reveals the resonance problem caused by the installation stiffness of the photoelectric platform base. For a pair of resonance and antiresonance
the filter to eliminate resonance based on a stable pole-zero cancellation method was designed. An equivalent strapdown inertial stability loop was constructed with the inertial angular velocity of the frame measured using the gyroscope
and the relative rotation angle of the mechanical frame measured using an encoder. In the loop above
we combined the inner loop interference suppression with the compound control method usingthe inverse model feedforward
which successfully expanded the system bandwidth
improved the tracking precision of the command
and enhanced the isolation performance. The simulation and experimental results show that the proposed method can effectively suppress the resonance of the elastic restraint moment of the mounting base and exhibit better performance than the gyroscope direct feedback control. For tracking a typical sinusoidal angular velocity command with an amplitude of 1 (°)/s and a frequency of 1 Hz
the root mean square error of the system decreased from 1.75 to 0.23 (°)/s
and the disturbance isolation decreased from 18% to 2%.
BULENT Ö, ALTUG U. Comparison of the strapdown and gimbaled seekers utilized in aerial applications[J]. SPIE, 2012, 8353:1-6.
张跃, 刘波, 訚胜利.捷联式光学导引头的稳定、跟踪原理与系统仿真[J].光学 精密工程, 2008, 16(10): 1942-1948.
ZHANG Y, LIU B, YIN SH L. Strapdown optical seeker: stabilization, tracking principle and system simulation[J]. Opt. Precision Eng., 2008, 16(10): 1942-1948.(in Chinese)
魏伟, 戴明, 李嘉全, 等.航空光电稳定平台的自抗扰控制系统[J].光学 精密工程, 2015, 23(8): 2296-2305.
WEI W, DAI M, LI J Q, et al.. ADRC control system for airborne opto-electronic platform[J]. Opt. Precision Eng., 2015, 23(8): 2296-2305.(in Chinese)
DONG F, LEI X S, CHOU W S. A dynamic model and control method for a two-axis inertially stabilized platform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 432-439.
DENG K, CONG S, KONG D J, et al.. Discrete-time direct model reference adaptive control application in a high-precision inertially stabilized platform[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 358-367.
SAFA A, YAZDANPANAH ABDOLMALAKI R. Robust output feedback tracking control for inertially stabilized platforms with matched and unmatched uncertainties[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 118-131.
张平, 董小萌, 付奎生.机载/弹载视觉导引稳定平台的建模与控制[M].北京:国防工业出版社, 2011.
ZHANG P, DONG X M, FU K SH. Modeling and control of Airborne/Missile-borne Vision-Guidance Stabilized Platform [M]. Beijing: National Defense Industry Press, 2011. (in Chinese)
LEE D H, LEE J, AHN J W. Mechanical vibration reduction control of two-mass permanent magnet synchronous motor using adaptive notch filter with fast Fourier transform analysis[J]. Iet Electric Power Applications, 2012, 6(7): 455-461.
陈明俊, 李长红, 杨燕.武器伺服系统工程实践[M].北京:国防工业出版社, 2013.
CHEN M J, LI CH H, YANG Y. Weapons Servo System Engineering Practice [M]. Beijing: National Defense Industry Press, 2013. (in Chinese)
朱明超, 刘慧, 张鑫, 等.惯性稳定平台自适应前馈控制[J].光学 精密工程, 2015, 23(1): 141-148.
ZHU M CH, LIU H, ZHANG X, et al.. Adaptive feed-forward control for inertially stabilized platform[J]. Opt. Precision Eng., 2015, 23(1): 141-148.(in Chinese)
孙高.半捷联光电稳定平台控制系统研究[D].北京: 中国科学院大学, 2013.
SUN G. Research on Control System of Semi-Strapdown Photoelectricity Stabilized Platform [D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)
邓永停, 李洪文, 王建立, 等.结构滤波器在望远镜主轴控制系统中的应用[J].光学 精密工程, 2017, 25(4): 368-377.
DENG Y T, LI H W, WANG J L, et al.. Application of structural filter to principal axis system of telescope[J]. Opt. Precision Eng., 2017, 25(4): 368-377.(in Chinese)
黄梁松, 曲道奎, 徐方, 等.基于可调惯量比的伺服系统低频谐振控制[J].电气传动, 2010, 40(7): 61-65.
HUANG L S, QU D K, XU F, et al.. Servo control strategy for low-frequency resonance suppression base on adjustable inertia ratio[J]. Electric Drive, 2010, 40(7): 61-65.(in Chinese)
ANDERSEN T, ENMARK A. Integrated Modeling of Telescopes [M]. New York: Springer, 2011.
王建敏, 吴云洁, 刘佑民, 等.基于数字滤波器的伺服系统谐振抑制方法[J].北京航空航天大学学报, 2015, 41(3): 485-491.
WANG J M, WU Y J, LIU Y M, et al.. Resonance suppression method based on digital filter for servo system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 485-491.(in Chinese)
吴敏.鲁棒控制理论[M].北京:高等教育出版社, 2010.
WU M. Robust Control Theory [M]. Beijing: Higher Education Press, 2010. (in Chinese)
SHETTY D, KOLK R A. Mechatronics System Design [M]. Second Edition. Poston: Cengage Learning, 2010.
TIAN D P, SHEN H H, DAI M. Improving the rapidity of nonlinear tracking differentiator via feedforward[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3736-3743.
ELLIS G. Control System Design Guide [M]. Fourth Edition. Netherlands: Elsevier, 2012.
李贤涛, 张葆, 沈宏海.基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J].光学 精密工程, 2014, 22(8): 2223-2231.
LI X T, ZHANG B, SHEN H H. Improvement of isolation degree of aerial photoelectrical stabilized platform based on ADRC[J]. Opt. Precision Eng., 2014, 22(8): 2223-2231.(in Chinese)
0
浏览量
306
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构