浏览全部资源
扫码关注微信
1.中国科学院 西安光学精密机械研究所, 陕西 西安 710119
2.中国科学院大学, 北京 100049
[ "吴少博 (1990-),男,陕西扶风人,博士研究生,2013年于西安交通大学获得学士学位,主要从事永磁同步电机控制及周视成像系统的研究。E-mail:wushaobo@opt.cn" ]
收稿日期:2019-12-31,
录用日期:2020-2-29,
纸质出版日期:2020-06-15
移动端阅览
吴少博, 王凯迪. 周视扫描成像系统的转台转速高精度控制[J]. 光学精密工程, 2020,28(6):1353-1364.
Shao-bo WU, Kai-di WANG. High-precision speed control of the turntable of a circumferential scanning imaging system[J]. Optics and precision engineering, 2020, 28(6): 1353-1364.
吴少博, 王凯迪. 周视扫描成像系统的转台转速高精度控制[J]. 光学精密工程, 2020,28(6):1353-1364. DOI: 10.3788/OPE.20202806.1353.
Shao-bo WU, Kai-di WANG. High-precision speed control of the turntable of a circumferential scanning imaging system[J]. Optics and precision engineering, 2020, 28(6): 1353-1364. DOI: 10.3788/OPE.20202806.1353.
为实现基于转台的像移补偿型周视扫描成像系统的高分辨率稳定成像,提出了一种复合控制算法对永磁同步电机驱动的扫描转台进行转速跟踪控制。根据转台的载荷特点及电机的数学模型,建立了包含机械参数不确定性和快变转矩扰动的单采样率控制系统模型;采用快速非奇异终端滑模和扩张高增益观测器复合控制实现了转速跟踪控制;采用快速非奇异终端滑模实现了最大转矩电流比控制;最后,分析并验证了基于上述复合算法的转速跟踪控制性能。实验表明:在转台转速设定为120 r/min或240 r/min时,采用该复合算法的转速跟踪误差均小于0.1%。与PI控制、快速非奇异终端滑模控制及线性滑模+观测器控制相比,采用该复合算法的转台转速响应具有无超调、抗扰动性能更强、跟踪精度更高的优点,能保证所述周视成像系统获得清晰稳定的周视全景图像。
In this study
a composite control algorithm was developed for controlling the turntable speed of a circumferential scanning imaging system (ICSIS) driven by a permanent magnet synchronous motor (PMSM) to obtain stable high-resolution images. Based on the load characteristics of the turntable and the mathematical model of the PMSM
a single-sampling rate control system model
comprising the mechanical parameter uncertainty and fast-changing torque disturbance
was established. The fast nonsingular terminal sliding mode (FNTSM) control and an extended high-gain observer were used in designing the speed-tracking controller. The maximum torque current ratio control was determined through another FNTSM control. Finally
the performance of the speed tracking control based on the above composite algorithm was analyzed and verified. The experimental results show that when the turntable speed is set to 120 or 240 r/min
the speed tracking error is less than 0.1%. Compared with the proportional-integral control
FNTSM control
and linear sliding mode control+observer
the governing system with the proposed algorithm was characterized by no overshooting
stronger anti-disturbance
and higher speed-tracking precision
which enabled the ICSIS to capture clear and stable circumferential images.
白波.采用焦平面探测器的红外搜索跟踪系统关键技术研究[D].西安: 西安工业大学, 2012.
BAI B. Key Technology Research of Infrared Search and Tracking System ( IRST system ) with Focal Plane Array ( FPA )[D]. Xi'an: Xi'an Technological University, 2012. (in Chinese)
陈超帅.红外面阵搜索系统快速扫描成像像移补偿技术研究与实现[D].北京: 中国科学院大学, 2018.
CHEN CH SH. The Research and Realization of the Fast Scan Imaging Image Shift Compensation Technology of the Red Array Search System [D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)
HOSHYAR M, MOLA M. Full adaptive integral backstepping controller for interior permanent magnet synchronous motors[J]. Asian Journal of Control , 2018, 20(2): 768-779.
LIU X D, LI K, ZHANG C H. Improved backstepping control with nonlinear disturbance observer for the speed control of permanent magnet synchronous motor[J]. Journal of Electrical Engineering & Technology , 2019, 14(1): 275-285.
邓永停, 李洪文, 王建立, 等.基于预测函数控制和扰动观测器的永磁同步电机速度控制[J].光学 精密工程, 2014, 22(6): 1598-1605.
DENG Y T, LI H W, WANG J L, et al .. Speed control for PMSM based on predictive functional control and disturbance observer[J]. Opt. Precision Eng. , 2014, 22(6): 1598-1605. (in Chinese)
TARCZEWSKI T, GRZESIAK L M. Constrained state feedback speed control of PMSM based on model predictive approach[J]. IEEE Transactions on Industrial Electronics , 2016, 63(6): 3867-3875.
王伟然, 吴嘉欣, 张懿, 等.永磁同步电机模糊自整定自适应积分反步控制[J].电工技术学报, 2020, 35(4): 724-733.
WANG W R, WU J X, ZHANG Y, et al .. Fuzzy self-tuning adaptive integral backstepping control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society , 2020, 35(4): 724-733. (in Chinese)
ZHANG X G, SUN L Z, ZHAO K, et al .. Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques[J]. IEEE Transactions on Power Electronics , 2013, 28(3): 1358-1365.
QIAN J Z, XIONG A, MA W L. Extended state observer-based sliding mode control with new reaching law for PMSM speed control[J]. Mathematical Problems in Engineering , 2016, 2016: 1-10.
CHOI H H, KIM E K, YU D Y, et al .. Precise PI speed control of permanent magnet synchronous motor with a simple learning feedforward compensation[J]. Electrical Engineering , 2017, 99(1): 133-139.
刘京, 李洪文, 邓永停.基于鲁棒迭代学习控制的永磁同步电机转矩脉动抑制[J].光学 精密工程, 2017, 25(10): 2645-2660.
LIU J, LI H W, DENG Y T. Torque ripple minimization of PMSM based on robust iterative learning control[J]. Opt. Precision Eng. , 2017, 25(10): 2645-2660. (in Chinese)
XIA P P, DENG Y T, WANG Z Q, et al .. Speed adaptive sliding mode control with an extended state observer for permanent magnet synchronous motor[J]. Mathematical Problems in Engineering , 2018, 2018(2018): 1-13.
邓永停, 李洪文, 王建立, 等.基于卡尔曼滤波器的交流伺服系统自适应滑模控制[J].光学 精密工程, 2014, 22(8): 2088-2095.
DENG Y T, LI H W, WANG J L, et al .. Adaptive sliding mode control for AC servo system based on Kalman filter[J]. Opt. Precision Eng. , 2014, 22(8): 2088-2095. (in Chinese)
XU W, JIANG Y J, MU C X. Novel composite sliding mode control for PMSM drive system based on disturbance observer[J]. IEEE Transactions on Applied Superconductivity , 2016, 26(7): 1-5.
刘京, 李洪文, 邓永停.基于扰动观测器的永磁同步电机电流环自适应滑模控制[J].光学 精密工程, 2017, 25(5): 1229-1241.
LIU J, LI H W, DENG Y T. Current adaptive sliding mode control based on disturbance observer for permanent magnet synchronous motor[J]. Opt. Precision Eng. , 2017, 25(5): 1229-1241. (in Chinese)
LI S H, ZHOU M M, YU X H. Design and implementation of terminal sliding mode control method for PMSM speed regulation system[J]. IEEE Transactions on Industrial Informatics , 2013, 9(4): 1879-1891.
LIU J, LI H W, DENG Y T. Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control[J]. IEEE Transactions on Power Electronics , 2018, 33(4): 3655-3671.
ZHENG J C, WANG H, MAN Z H, et al .. Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode[J]. IEEE/ASME Transactions on Mechatronics , 2015, 20(4): 1743-1752.
YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control , 2011, 21(16): 1865-1879.
LI S, YANG J, CHEN W-H, et al .. Disturbance Observer-Based Control: Methods and Applications [M]. Boca Raton: CRC press, 2016.
FREIDOVICH L B, KHALIL H K. Performance recovery of feedback-linearization-based designs[J]. IEEE Transactions on Automatic Control , 2008, 53(10): 2324-2334.
ZUO Z Y. Non-singular fixed-time terminal sliding mode control of non-linear systems[J]. Iet Control Theory and Applications , 2015, 9(4): 545-552.
0
浏览量
127
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构