浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所 中国科学院航空光学成像与 测量重点实验室,吉林 长春 130033
2.空军航空大学,吉林 长春 130022
[ "黄浦 (1981-),男,湖北仙桃人,博士,副研究员,2011年于中科院长春光学精密机械与物理研究所获得博士学位,主要从事航空成像与测量技术及先进数字控制技术的研究。E-mail:hpu8@163.com" ]
[ "杨秀丽 (1979-),女,吉林松原人,硕士,讲师,2008年于中科院长春光学精密机械与物理研究所获得硕士学位,主要从事控制系统机械结构设计与有限元分析的研究。E-mail:yangxl0@163.com" ]
收稿日期:2019-11-26,
录用日期:2019-12-27,
纸质出版日期:2020-06-15
移动端阅览
黄浦, 杨秀丽, 修吉宏, 等. 音圈致动快速反射镜的降阶自抗扰控制[J]. 光学精密工程, 2020,28(6):1365-1374.
Pu HUANG, Xiu-li YANG, Ji-hong XIU, et al. Reduced-order active disturbance rejection control of fast steering mirror driven by VCA[J]. Optics and precision engineering, 2020, 28(6): 1365-1374.
黄浦, 杨秀丽, 修吉宏, 等. 音圈致动快速反射镜的降阶自抗扰控制[J]. 光学精密工程, 2020,28(6):1365-1374. DOI: 10.3788/OPE.20202806.1365.
Pu HUANG, Xiu-li YANG, Ji-hong XIU, et al. Reduced-order active disturbance rejection control of fast steering mirror driven by VCA[J]. Optics and precision engineering, 2020, 28(6): 1365-1374. DOI: 10.3788/OPE.20202806.1365.
为改善航空光电载荷用音圈致动快速反射镜的控制性能,提出一种降阶自抗扰控制方法。首先,对快速反射镜(Fast Steering Mirror,FSM)模型进行了分析并获取了模型参数。根据自抗扰控制理论,设计了FSM的三阶通用自抗扰控制器。将电涡流传感器的测量结果视为已知,提出降阶扩张状态观测器及其对应的自抗扰控制器设计方法。根据控制器带宽设计思想,推导了对于FSM这类二阶欠阻尼对象的控制律,并给出了加入扰动补偿量的控制律的具体实现形式。实验结果表明,降阶自抗扰控制能明显改善FSM的位置阶跃响应动态性能,能实现无超调与振荡的阶跃响应,稳态时间由11.7 ms提升至9.2 ms,同时能够降低FSM对位置斜坡输入跟踪的稳态误差,并改善其速度响应动态过程,像移补偿稳速时间由10.2 ms提升至7.8 ms,提升约24%。降阶自抗扰控制具有实现简单、运算量小的特点,能够明显提升FSM的动态性能。
A reduced-order autodisturbance rejection control method was proposed to improve the control performance of a fast steering mirror(FSM) driven by VCA applied in aerial photoelectric loads. The FSM model was analyzed
and the model parameters were obtained. Based on the theory of active disturbance rejection control (ADRC)
the general third-order ADRC of the FSM was designed. The eddy current sensor measurement results were assumed
and the reduced-order extended state observer and its corresponding ADRC design method were proposed. Based on the controller bandwidth design theory
the control law of the second-order under damped object
such as FSM
was deduced
and the specific realization form of the control law with the disturbance compensation value was provided. The experimental results show that the reduced-order ADRC can significantly improve the dynamic performance of the positional step response of the FSM and can achieve a step response without overshoot and oscillation. The steady-state time reduces from 11.7 to 9.2 ms.In addition
the tracking steady-state error of the position ramp response declines
and the dynamic process of speed response improved. The speed stabilization time of image motion compensation drops from 10.2 to 7.8 ms
which is approximately 24%. The reduced-order ADRC can significantly improve the dynamic performance of FSM because of its simpler implementation and less computation.
张士涛.音圈式大行程快速反射镜及其视轴稳定技术研究[D].北京: 中国科学院大学, 2019.
ZHANG SH T. Research on Large-scale Fast-steering-mirror Driven by Voice Coil Motor and Its Line-of-sight Stabilization Technology [D]. Beijing: University of Chinese Academy of Sciences, 2019.(in Chinese)
CHANG T Q, WANG Q D, ZHANG L, et al .. Battlefield dynamic scanning and staring imaging system based on fast steering mirror[J]. Journal of Systems Engineering and Electronics , 2019, 30(1): 37-56.
IBRIR S, SU C Y, OOI B S, et al .. Fast and reliable control of steering mirrors with application to free-space communication[C]. 2017 International Conference on Advanced Mechatronic Systems ( ICAMechS ), 6-9 Dec. 2017, Xiamen, China. IEEE, 2017: 483-488.
李贤涛, 张晓沛, 毛大鹏, 等.高精度音圈快速反射镜的自适应鲁棒控制[J].光学 精密工程, 2017, 25(9): 2428-2436.
LI X T, ZHANG X P, MAO D P, et al .. Adaptive robust control over high-performance VCM-FSM[J]. Opt. Precision Eng. , 2017, 25(9): 2428-2436.(in Chinese)
孙崇尚.基于快速反射镜的高精度、宽频带扫描像移补偿技术研究[D].北京: 中国科学院大学, 2016.
SUN C SH. Research on the Scanning Image Motion Compensation Technology Based on Fast Steering with High Precision and Wide Frequency Range [D]. Beijing: University of Chinese Academy of Sciences, 2016.
王昱棠, 张宇鹏, 徐钰蕾.压电陶瓷驱动快速反射镜双闭环控制[J].仪器仪表学报, 2014, 35(S1): 68-72.
WANG Y T, ZHANG Y P, XU Y L. Dual-loop control strategy for fast-steering mirror driven by PZT[J]. Chinese Journal of Scientific Instrument , 2014, 35(S1): 68-72. (in Chinese)
王震, 程雪岷.快速反射镜研究现状及未来发展[J].应用光学, 2019, 40(3): 373-379.
WANG ZH, CHENG X M. Research progress and development trend of fast steering mirror[J]. Journal of Applied Optics , 2019, 40(3): 373-379. (in Chinese)
徐新行, 王恒坤, 韩旭东, 等.机载小型化快速反射镜用微位移测量传感器设计[J].仪器仪表学报, 2015, 36(9): 1937-1944.
XU X H, WANG H K, HAN X D, et al .. Design of displacement sensor for fast steering mirror with small volume on airborne platform[J]. Chinese Journal of Scientific Instrument , 2015, 36(9): 1937-1944.(in Chinese)
TANG T. PID-I controller of charge coupled device-based tracking loop for fast-steering mirror[J]. Optical Engineering , 2011, 50(4): 043002.
丁科, 黄永梅, 马佳光, 等.抑制光束抖动的快速反射镜复合控制[J].光学 精密工程, 2011, 19(9): 1991-1998.
DING K, HUANG Y M, MA J G, et al .. Composite control of fast-steering-mirror for beam jitter[J]. Opt. Precision Eng. , 2011, 19(9): 1991-1998.(in Chinese)
张士涛, 张葆, 李贤涛, 等.基于零相差轨迹控制方法提升快速反射镜性能[J].吉林大学学报:工学版, 2018, 48(3): 853-858.
ZHANG SH T, ZHANG B, LI X T, et al .. Enhancing performance of FSM based on zero phase error tracking control[J]. Journal of Jilin University: Engineering and Technology Edition , 2018, 48(3): 853-858.(in Chinese)
ALVI B A, ASIF M, SIDDIQUI F A, et al .. Fast steering mirror control using embedded self-learning fuzzy controller for free space optical communication[J]. Wireless Personal Communications , 2014, 76(3): 643-656.
高志强.控制工程的抗扰范式[C].第二十九届中国控制会议论文集.北京, 2010: 6146-6151.
GAO ZH Q. On disturbance rejection paradigm in control engineering[C]. Proceedings of the 29th Chinese Control Conference , 29-31 July 2010, Beijing, China: 6146-6151. (in Chinese)
GAO ZH Q, HUANG Y, HAN J Q. An alternative paradigm for control system design[C]. Proceedings of the 40 th IEEE Conference on Decision and Control ( Cat . No .01 CH 37228), 4-7 Dec. 2001, Orlando, FL, USA. IEEE, 2001: 4578-4585.
韩京清.自抗扰控制技术[J].前沿科学, 2007, 1(1): 24-31.
HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science , 2007, 1(1): 24-31.(in Chinese)
韩京清.自抗扰控制技术—估计补偿不确定因素的控制技术[M].北京:国防工业出版社, 2008.
HAN J Q. Active Disturbance Rejection Control Technique-the technique for estimating and compensating the uncertainties [M]. Beijing:National Defense Industry Press, 2008.(in Chinese)
PAWAR S N, CHILE R H, PATRE B M. Modified reduced order observer based linear active disturbance rejection control for TITO systems[J]. ISA Transactions , 2017, 71: 480-494.
GANG T. Reduced-order Extended State Observer and Frequency Response Analysis [D]. Cleveland: Cleveland State University, 2007.
GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]. Proceedings of the 2003 American Control Conference , 2003., 4-6 June 2003, Denver, CO, USA. IEEE, 2003: 4989-4996.
黄浦, 杨秀丽, 修吉宏, 等.基于扩张状态观测器的快速步进/凝视成像机构控制[J].光学 精密工程, 2018, 26(8): 2084-2091.
HUANG P, YANG X L, XIU J H, et al .. Extended state observer based control of fast step/stare imaging mechanisms[J]. Opt. Precision Eng. , 2018, 26(8): 2084-2091.(in Chinese)
刘玉燕, 刘吉臻, 周世梁.基于降阶状态观测器的压水堆功率自抗扰控制[J].中国电机工程学报, 2017, 37(22): 6666-6674, 6779.
LIU Y Y, LIU J ZH, ZHOU SH L. Active disturbance rejection control of pressurized water reactor power based on reduced-order extended state observer[J]. Proceedings of the CSEE , 2017, 37(22): 6666-6674, 6779.(in Chinese)
0
浏览量
216
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构