浏览全部资源
扫码关注微信
1.国防科技大学 空天科学学院,湖南 长沙 410073
2.中国科学院 长春光学精密机械与物理研究所,航空光学成像与测量重点实验室,吉林 长春 130033
3.中国航空工业集团公司沈阳飞机设计研究所,辽宁 沈阳 110035
4.中国科学院大学,北京 10049
5.图像测量与视觉导航湖南省重点实验室,湖南 长沙 410073
[ "赵浩光 (1980-),男,河南新乡人,高级工程师,博士研究生,2003年于长春理工大学获得学士学位,2006年于长春理工大学获得硕士学位,现就职于沈阳飞机设计研究所。E-mail:laserradar@126.com" ]
董超 (1992-),女,吉林松原人,博士研究生,2015年于吉林大学获得学士学位,主要从事遥感图像显著性检测,目标检测与识别方面研究。E-mail: dongchao315@mails.ucas.ac.cn DONG Chao, E-mail: dongchao315@mails.ucas.ac.cn
收稿日期:2019-12-12,
录用日期:2020-1-16,
纸质出版日期:2020-06-15
移动端阅览
赵浩光, 王平, 董超, 等. 结合多尺度视觉显著性的舰船目标检测[J]. 光学精密工程, 2020,28(6):1395-1403.
Hao-guang ZHAO, Ping WANG, Chao DONG, et al. Ship detection based on the multi-scale visual saliency model[J]. Optics and precision engineering, 2020, 28(6): 1395-1403.
赵浩光, 王平, 董超, 等. 结合多尺度视觉显著性的舰船目标检测[J]. 光学精密工程, 2020,28(6):1395-1403. DOI: 10.3788/OPE.20202806.1395.
Hao-guang ZHAO, Ping WANG, Chao DONG, et al. Ship detection based on the multi-scale visual saliency model[J]. Optics and precision engineering, 2020, 28(6): 1395-1403. DOI: 10.3788/OPE.20202806.1395.
光学遥感图像海面舰船目标检测易受云雾,海岛,海杂波等复杂背景的干扰。本文提出了一种适用于复杂背景的舰船目标检测方法。首先为了克服目标尺度多变问题,利用视觉显著性生成多尺度显著图,然后使用基尼指数自适应选择最优显著图。考虑到全局阈值分割算法带来的漏检测问题,提出一种新的方案来分离目标和背景像素点。利用图像膨胀原理获取显著图的局部极大值点,然后使用k-means算法判断极大值点属于目标像素点还是背景像素点。接着对目标点邻近区域进行精细分割。最后引入基于径向梯度变换的旋转不变特征来进一步剔除虚警。实验结果表明,该算法能够成功检测出不同尺寸和方向的舰船目标,有效克服复杂背景的干扰。算法检测正确率93%,虚警率4%,优于其他舰船检测方法。
Ship detection from optical remote sensing images is easily disturbed by complex backgrounds
such as clouds
islands
and sea clutter. In this paper
a novel ship detection method was proposed to solve these problems. First
to solve the change in target size
multi-scale saliency maps were generated using a spectral residual visual saliency model
and the optimal saliency map was adaptively selected using the Gini index. Further
considering the problem of missing detection caused by the threshold segmentation
a two-stage segmentation method was proposed to separate the target and background pixels. The local maximums of the saliency map were then obtained using image expansion
and the k-means algorithm was adopted to determine whether each local maximum belongs to the target pixel or background pixel. The accurate candidate locations were obtained using the local threshold segmentation. Finally
the rotation invariant feature based on the radial gradient transform was introduced to further eliminate false alarm. The experimental results show that the proposed detection method can successfully detect ship targets of different sizes and directions and effectively overcome complex background interference. Additionally
the detection accuracy is 93%
and the false alarm rate is 4%
which are better than other saliency-based ship detection methods.
LENG X G, JI K F, XING X W, et al .. Area ratio invariant feature group for ship detection in sar imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2018, 11, 2376-2388.
ZHOU H T, ZHUANG Y, CHEN L, et al .. Signal and Information Processing, Networking and Computers [M]. Singapore: Springer, 2018.
金志刚, 李静昆.基于对象性和多层线性模型的协同显著性检测[J].光学 精密工程, 2019, 27(8):1845-1853.
JIN ZH G, LI J K. Co-saliency detection based on objectness and multi-layer linear model[J]. Opt. Precision Eng ., 2019, 27(8): 1845-1853. (in Chinese)
刘冬梅, 常发亮.结合Retinex校正和显著性的主动轮廓图像分割[J].光学 精密工程, 2019, 27(7):1593-1600.
LIU D M, CHANG F L. Active contour model for image segmentation based on Retinex correction and saliency[J]. Opt. Precision Eng ., 2019, 27(7): 1593-1600. (in Chinese)
徐芳, 刘晶红, 曾冬冬, 等.基于视觉显著性的无监督海面舰船检测与识别[J].光学 精密工程, 2017, 25(5):1300-1311.
XU F, LIU J H, ZENG D D, et al .. Detection and identification of unsupervised ships and warships on sea surface based on visual saliency[J]. Opt. Precision Eng ., 2017, 25(5): 1300-1311. (in Chinese)
董超, 刘晶红, 徐芳, 等.光学遥感图像舰船目标快速检测方法[J].吉林大学学报(工学版), 2019, 49(4):1369-1376.
DONG CH, LIU J H, XU F, et al .. Fast ship detection in optical remote sensing images[J]. Journal of Jilin University (Engineering and Technology Edition) , 2019, 49(4):1369-1376. (in Chinese)
LIU W C, MA L, CHEN H. Arbitrary-oriented ship detection framework in optical remote-sensing images[J]. IEEE Geoscience and Remote Sensing Letters , 2018, 15, 937-941.
WU F, ZHOU Z Q, WANG B, et al .. Inshore ship detection based on convolutional neural network in optical satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2018, 11, 4005-4015.
CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing , 2016, 54, 7405-7415.
HOU X D, ZHANG L. Saliency detection: a spectral residual approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis , 2007: 1-8.
WONG J A, HARTIGAN H A. Algorithm AS 136: A K-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics) , 1979, 28(1):100-108.
TAKACS G, CHANDRASEKHAR V, TSAI S, et al .. Unified real-time tracking and recognition with rotation-invariant fast features[C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco , 2010: 934-941.
OTSU, N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 1979, 9, 62-66.
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego , 2005: 886-893.
WANG J, JIANG H, YUAN Z, et al .. Salient object detection: A discriminative regional feature integration approach[J]. International Journal of Computer Vision , 2017, 123(2):251-268.
ERDEM E, ERDEM A. Visual saliency estimation by nonlinearly integrating features using region covariances[J]. Journal of Vision, 2013, 13(4):1-20.
0
浏览量
273
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构